Skip to main content
Log in

Schiff Base-Functionalized Multi Walled Carbon Nano Tubes to Immobilization of Palladium Nanoparticles as Heterogeneous and Recyclable Nanocatalyst for Suzuki Reaction in Aqueous Media Under Mild Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Herein we described the synthesis of a novel Schiff base-MWCNTs-Pd nanocatalyst by covalent grafting of naphto-Schiff base onto carbon nanotubes and subsequent deposition of Pd nanoparticles. The synthetic process of preparation of mentioned nanocatalyst (Schiff base-MWCNTs-Pd) has been described. The formation of nanocatalyst was analyzed by FTIR, Raman spectroscopy, powder XRD, energy dispersive spectroscopy (EDS), thermogravimetric (TGA) analysis, wavelength-dispersive X-ray spectroscopy (WDX) and CHN analysis. The morphologies of the nanocatalyst were characterized using scanning and transmission electron microscopes (SEM and TEM). Additionally, the (Schiff base-MWCNTs-Pd) nanocatalyst was successfully employed in Suzuki cross coupling reactions with wide variety of functionalized substrates. Design of experiments indicates that the use of 0.2 mol% of Pd, K2CO3 as the base, and aqueous ethanol are the best reaction conditions. The reactions of aryl iodides and aryl bromides take place at room temperature, and aryl chlorides react at 80 °C. Interestingly, the novel catalyst could be recovered and recycled four times without any significant loss in activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. Han Z, Fina A (2011) Prog Polym Sci 36:914

    Article  CAS  Google Scholar 

  2. Sun K, Stroscio MA, Dutta M (2009) J Appl Phy 105:1

    Google Scholar 

  3. Che J, Cagin T, Goddard WA III, (2000) Nanotechnology 11:65

    Article  CAS  Google Scholar 

  4. Martinez-Hernandez AL, Velasco-Santos C, Castano VM (2010) Nanoscience 6:12

    Article  CAS  Google Scholar 

  5. Miyagawa H, Misra M, Mohanty AK (2005) J Nanosci Nanotech 5:1593

    Article  CAS  Google Scholar 

  6. Popoy V (2004) Mat Sci Eng R Reports R43:61

    Google Scholar 

  7. Kramberger C, Pichler T, Adv Carbon Nanomaterials 131

  8. Liu K, Deslippe J, Xiao F, Capaz RB, Hong X, Aloni S, Zettl A, Wang W, Bai X, Louie SG, Wang E, Wang F (2012) Nat Nano 7:325

    Article  CAS  Google Scholar 

  9. Biswas C, Lee YH (2011) Adv Func Mat 21:3806

    Article  CAS  Google Scholar 

  10. Serp P, Corrias M, Kalck P (2003) Appl Cat A General 253:337

    Article  CAS  Google Scholar 

  11. Serp P, Castillejos E (2010) Chem Cat Chem 2:41

    CAS  Google Scholar 

  12. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194

    Article  CAS  Google Scholar 

  13. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787

    Article  CAS  Google Scholar 

  14. Wildgoose GG, Banks CE, Compton RG (2006) Small 2:182

    Article  CAS  Google Scholar 

  15. Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) J Mat Chem 17:2679

    Article  CAS  Google Scholar 

  16. Veisi H, Khazaei A, Safaei M, Kordestani D (2014) J Mol Catal A Chem 382:106

    Article  CAS  Google Scholar 

  17. Sullivan JA, Flanagan KA, Hain H (2009) Catal Today 145:108

    Article  CAS  Google Scholar 

  18. Turkenburg DH, Antipov AA, Thathager MB, Rothenberg G, Sukhorukov GB, Eiser E (2005) Phys Chem Chem Phys 7:2237

    Article  CAS  Google Scholar 

  19. Ghorbani-Vaghei R, Hemmati S, Hashemi M, Veisi H (2015) C R Chimie 18:636

    Article  CAS  Google Scholar 

  20. Zhang PP, Zhang XX, Sun HX, Liu RH, Wang B, Lin YH (2009) Tetrahedron Lett 50:4455

    Article  CAS  Google Scholar 

  21. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  23. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  24. Zanti G, Peeters D (2009) Eur J Inorg Chem, 3904–3911

  25. Rana S, Maddila S, Yalagala K, Jonnalagadda SB (2015) Applied Catalysis A General 505:539

    Article  CAS  Google Scholar 

  26. Das P, Linert W (2016) Coord Chem Rev 311:1–23

    Article  CAS  Google Scholar 

  27. Adib M, karimi Nami R, Veisi H (2016) New J Chem 40:4945

    Article  CAS  Google Scholar 

  28. Yan J-A, Chou MY (2010) Phys Rev B 82:125403

    Article  Google Scholar 

  29. Wang L-L, Johnson DD (2007) J Am Chem Soc 129:3658–3664

    Article  CAS  Google Scholar 

  30. Ravon U, Chaplais G, Chizallet C, Seyyedi B, Bonino F, Bordiga S, Bats N, Farrusseng D (2010) Chem Cat Chem 2(10):1235–8

    CAS  Google Scholar 

  31. Pickard CJ, Mauri F (2001) Phys Rev B 63:245101

    Article  Google Scholar 

  32. Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  33. Liao K-H, Mittal A, Bose S, Leighton C, Khoyan KA, Macosko CW (2011) ACS Nano 5:1253–1258

    Article  CAS  Google Scholar 

  34. Niedermann K, Welch JM, Koller R, CvengrošSantschi JN, Battaglia P, Togni A (2010) Tetrahedron 66:5753–5761

    Article  CAS  Google Scholar 

  35. Santra S, Dhara K, Ranjan P, Bera P, Dash J, Mandal SK (2011) Green Chem 13:3238–3247

    Article  CAS  Google Scholar 

  36. Xu C, Yin L, Huang B, Liu H, Cai M (2016) Tetrahedron 72:2065

    Article  CAS  Google Scholar 

  37. El Hankari S, El Kadib A, Finiels A, Bouhaouss A, Moreau JJE, Crudden CM, Brunel D, Hesemann P (2011) Chem Eur J 17:8984

    Article  CAS  Google Scholar 

  38. Shuai Z, Melanie J, Veinot JGC (2010) Chem Commun 46:2411

    Article  Google Scholar 

  39. Formo E, Yavuz MS, Lee EP, Lane L, Xia Y (2009) J Mat Chem 19:3878

    Article  CAS  Google Scholar 

  40. Santra S, Ranjan P, Bera P, Ghosh P, Mandal SK (2012) RSC Adv 2:7523–7533

    Article  CAS  Google Scholar 

  41. Ganesan M, Freemantle RG, Obare SO (2007) Chem Mater 19:3464–3471

    Article  CAS  Google Scholar 

  42. Yeh T-F, Syu J-M, Cheng C, Chang T-H, Teng H (2010) Adv Funct Mater 20:2255–2262

    Article  CAS  Google Scholar 

  43. Diallo AK, Ornelas C, Salmon L, Ruiz Aranzaes J, Astruc D (2007) Angew Chem Int Ed Engl 46:8644

    Article  CAS  Google Scholar 

  44. Shen J, Hu Y, Shi M, Li N, Ma H, Ye M (2010) J Phys Chem C 114:1498–1503

    Article  CAS  Google Scholar 

  45. Carey JS, Laffan D, Thomson C, Williams MT (2006) Org Biomol Chem 4:2337–2347

    Article  CAS  Google Scholar 

  46. Matheron ME, Porchas M (2004) Plant Dis 88:665–668

    Article  CAS  Google Scholar 

  47. Capan A, Veisi H, Goren AC, Ozturk T (2012) Macromolecules 45:8228–8236

    Article  CAS  Google Scholar 

  48. Pirhayati M, Veisi H, Kakanejadifard A (2016) RSC Adv, 6:27252

    Article  CAS  Google Scholar 

  49. Veisi H, Hamelian M, Hemmati S (2014) J Mol Catal A 395:25

    Article  CAS  Google Scholar 

  50. Veisi H, Masti R, Kordestani D, Safaei M, Shahin O (2014) J Mol Catal A 385:61

    Article  CAS  Google Scholar 

  51. Veisi H, Kordestani D, Faraji AR (2014) J Porous Mater 21:141

    Article  CAS  Google Scholar 

  52. Veisi H, Morakabati N (2015) New J Chem 39:2901

    Article  CAS  Google Scholar 

  53. Veisi H, Sedrpoushan A, Maleki B, Hekmati M, Heidari M, Hemmati S (2015) Apply Organomet Chem 29:834

    Article  CAS  Google Scholar 

  54. Veisi H, Rashtiani A, Barjasteh V (2016) Appl Organometal Chem 30:231

    Article  CAS  Google Scholar 

  55. Veisi H, Ghadermazi M, Naderi A (2016) Appl Organometal Chem 30:341

    Article  CAS  Google Scholar 

  56. Azadbakht R, Parviz M, Tamari E, Keypour H, Golbedaghi R (2011) Spectrochim Acta A 82:200–204

    Article  CAS  Google Scholar 

  57. Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131

    Article  CAS  Google Scholar 

  58. Fortea-Pérez FR, Schlegel I, Julve M, Armentano D, De Munno G, Stiriba SE (2013) J Organomet Chem 743:102

    Article  Google Scholar 

  59. Liu QX, Zhang W, Zhao XJ, Zhao ZX, Shi MC, Wang XG (2013) Eur J Org Chem 2013:1253

    Article  CAS  Google Scholar 

  60. Ghiaci M, Zargani M, Moeinpour F, khojastehnezhad A (2014) Appl Organometal Chem 28:589

    Article  CAS  Google Scholar 

  61. de Paula VI, Sato CA, Buffon R (2012) J Braz Chem Soc 23:258

    Google Scholar 

  62. Shakil Hussain SM, Ibrahim MB, Fazal A, Suleiman R, Fettouhi M, El Ali B (2014) Polyhedron 70:39

    Article  CAS  Google Scholar 

  63. Sobhani S, Ghasemzadeh MS, Honarmand M, Zarifi F (2014) RSC Adv 4:44166

    Article  CAS  Google Scholar 

  64. Sobhani S, Zarifi F (2015) Chinese J. Catal 555

Download references

Acknowledgements

We are thankful to Payame Noor University for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojat Veisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veisi, H., Azadbakht, R., Saeidifar, F. et al. Schiff Base-Functionalized Multi Walled Carbon Nano Tubes to Immobilization of Palladium Nanoparticles as Heterogeneous and Recyclable Nanocatalyst for Suzuki Reaction in Aqueous Media Under Mild Conditions. Catal Lett 147, 976–986 (2017). https://doi.org/10.1007/s10562-016-1963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1963-7

Keywords

Navigation