Catalysis Letters

, Volume 147, Issue 3, pp 622–632 | Cite as

Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity

  • Yongju Yun
  • Joyce R. Araujo
  • Gerome Melaet
  • Jayeon Baek
  • Braulio S. Archanjo
  • Myounghwan Oh
  • A. Paul Alivisatos
  • Gabor A. Somorjai
Article

Abstract

Dehydrogenation of propane to propene is one of the important reactions for the production of higher-value chemical intermediates. In the commercial processes, platinum- or chromium oxide-based catalysts have been used for catalytic propane dehydrogenation. Herein, we first report that bulk tungsten oxide can serve as the catalyst for propane dehydrogenation. Tungsten oxide is activated by hydrogen pretreatment and/or co-feeding of hydrogen. Its catalytic activity strongly depends on hydrogen pretreatment time and partial pressure of hydrogen in the feed gas. The activation of tungsten oxide by hydrogen is attributed to reduction of the metal oxide and presence of multivalent oxidation states. Comparison of the catalytic performance of partially reduced WO3−x to other highly active metal oxides shows that WO3−x exhibits superior catalytic activity and selectivity than Cr2O3 and Ga2O3. The findings of this work provide the possibility for activation of metal oxides for catalytic reactions and the opportunity for the development of new type of catalytic systems utilizing partially reduced metal oxides.

Graphical Abstract

Keywords

Heterogeneous catalysis Dehydrogenation Tungsten oxide Reduction Oxidation state 

Supplementary material

10562_2016_1915_MOESM1_ESM.docx (174 kb)
Supplementary material 1 (DOCX 174 KB)

References

  1. 1.
    Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653CrossRefGoogle Scholar
  2. 2.
    McFarland E (2012) Science 338:340–342CrossRefGoogle Scholar
  3. 3.
    Kumar MS, Chen D, Holmen A, Walmsley JC (2009) Catal Today 142:17–23CrossRefGoogle Scholar
  4. 4.
    Chaar MA, Patel D, Kung HH (1988) J Catal 109:463–467CrossRefGoogle Scholar
  5. 5.
    Larsson M, Hulten M, Blekkan EA, Andersson B (1996) J Catal 164:44–53Google Scholar
  6. 6.
    Gascon J, Tellez C, Herguido J, Menendez M (2003) Appl Catal A 248:105–116CrossRefGoogle Scholar
  7. 7.
    Pham HN, Sattler JJHB, Weckhuysen BM, Datye AK (2016) ACS Catal 6:2257–2264CrossRefGoogle Scholar
  8. 8.
    Liu G, Zeng L, Zhao ZJ, Tian H, Wu TF, Gong JL (2016) ACS Catal 6:2158–2162CrossRefGoogle Scholar
  9. 9.
    Weckhuysen BM, Bensalem A, Schoonheydt RA (1998) J Chem Soc Faraday Trans 94:2011–2014CrossRefGoogle Scholar
  10. 10.
    Sattler JJHB, Gonzalez-Jimenez ID, Luo L, Stears BA, Malek A, Barton DG, Kilos BA, Kaminsky MP, Verhoeven TWGM, Koers EJ et al (2014) Angew Chem Int Ed 53:9251–9256CrossRefGoogle Scholar
  11. 11.
    Zheng B, Hua WM, Yue YH, Gao Z (2005) J Catal 232:143–151CrossRefGoogle Scholar
  12. 12.
    Sun YN, Wu YM, Tao L, Shan HH, Wang GW, Li CY (2015) J Mol Catal A 397:120–126CrossRefGoogle Scholar
  13. 13.
    Khodakov A, Yang J, Su S, Iglesia E, Bell AT (1998) J Catal 177:343–351CrossRefGoogle Scholar
  14. 14.
    Tan S, Kim SJ, Moore JS, Liu YJ, Dixit RS, Pendergast JG, Sholl DS, Nair S, Jones CW (2016) ChemCatChem 8:214–221CrossRefGoogle Scholar
  15. 15.
    Otroshchenko T, Sokolov S, Stoyanova M, Kondratenko VA, Rodemerck U, Linke D, Kondratenko EV (2015) Angew Chem Int Ed 54:15880–15883CrossRefGoogle Scholar
  16. 16.
    Perez-Reina FJ, Rodriguez-Castellon E, Jimenez-Lopez A (1999) Langmuir 15:8421–8428CrossRefGoogle Scholar
  17. 17.
    Chen M, Xu J, Su FZ, Liu YM, Cao Y, He HY, Fan KN (2008) J Catal 256:293–300CrossRefGoogle Scholar
  18. 18.
    Halasz J, Konya Z, Fudala A, Kiricsi I (1996) Catal Today 31:293–304CrossRefGoogle Scholar
  19. 19.
    Zhao ZJ, Chiu CC, Gong JL (2015) Chem Sci 6:4403–4425CrossRefGoogle Scholar
  20. 20.
    Liu G, Zhao ZJ, Wu TF, Zeng L, Gong JL (2016) ACS Catal 6:5207–5214CrossRefGoogle Scholar
  21. 21.
    Liu Y, Luo C, Liu HC (2012) Angew Chem Int Ed 51:3249–3253CrossRefGoogle Scholar
  22. 22.
    Zheng HD, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-Zadeh K (2011) Adv Funct Mater 21:2175–2196CrossRefGoogle Scholar
  23. 23.
    Manthiram K, Alivisatos AP (2012) J Am Chem Soc 134:3995–3998CrossRefGoogle Scholar
  24. 24.
    Deb SK (2008) Sol Energy Mater Sol Cells 92:245–258CrossRefGoogle Scholar
  25. 25.
    Song JJ, Huang ZF, Pan L, Zou JJ, Zhang XW, Wang L (2015) ACS Catal 5:6594–6599CrossRefGoogle Scholar
  26. 26.
    Li YH, Liu PF, Pan LF, Wang HF, Yang ZZ, Zheng LR; Hu P, Zhao HJ, Gu L, Yang HG (2015) Nat Commun 6Google Scholar
  27. 27.
    Belatel H, Al-Kandari, H, Al-Kharafi F, Garin F, Katrib A (2007) Appl Catal A 318:227–233CrossRefGoogle Scholar
  28. 28.
    Barton DG, Soled SL, Meitzner GD, Fuentes GA, Iglesia E (1999) J Catal 181:57–72CrossRefGoogle Scholar
  29. 29.
    Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152–155CrossRefGoogle Scholar
  30. 30.
    Shi JN, Allara DL (1996) Langmuir 12:5099–5108CrossRefGoogle Scholar
  31. 31.
    Weckhuysen BM, Verberckmoes AA, Debaere J, Ooms K, Langhans I, Schoonheydt RA (2000) J Mol Catal A 151:pp 115–131CrossRefGoogle Scholar
  32. 32.
    Cavani F, Koutyrev M, Trifiro F, Bartolini A, Ghisletti D, Iezzi R, Santucci A, DelPiero G (1996) J Catal 158:236–250CrossRefGoogle Scholar
  33. 33.
    Hakuli A, Harlin ME, Backman LB, Krause AOI (1999) J Catal 184:349–356CrossRefGoogle Scholar
  34. 34.
    Derossi S, Ferraris G, Fremiotti S, Garrone E, Ghiotti G, Campa MC, Indovina V (1994) J Catal 148:36–46CrossRefGoogle Scholar
  35. 35.
    Logie V, Wehrer P, Katrib A, Maire G (2000) J Catal 189:438–448CrossRefGoogle Scholar
  36. 36.
    Katrib A, Logie V, Saurel N, Wehrer P, Hilaire L, Maire G (1997) Surf Sci 377:754–758CrossRefGoogle Scholar
  37. 37.
    Hemming F, Wehrer P, Katrib A, Maire G (1997) J Mol Catal A 124:39–56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yongju Yun
    • 1
    • 2
  • Joyce R. Araujo
    • 2
    • 4
  • Gerome Melaet
    • 1
    • 2
  • Jayeon Baek
    • 1
    • 2
  • Braulio S. Archanjo
    • 2
    • 4
  • Myounghwan Oh
    • 1
    • 2
  • A. Paul Alivisatos
    • 1
    • 2
    • 3
    • 5
  • Gabor A. Somorjai
    • 1
    • 2
    • 3
    • 5
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Chemical Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Materials Metrology DivisionNational Institute of Metrology, Quality and TechnologyDuque de CaxiasBrazil
  5. 5.Kavli Energy NanoScience InstituteBerkeleyUSA

Personalised recommendations