Skip to main content
Log in

Effect of Water Content and Catalysts Acidity in the Products Distribution During Propylene Synthesis with a Mixture of DME and Methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Conversion of methanol and dimethyl ether to propylene was investigated in a fixed-bed reactor using an extruded H-ZSM-5 catalyst embedded in a matrix of silica. Physical and chemical properties of these catalysts have been determined by SEM, N2 adsorption–desorption, XRD, and NH3-TPD. Results showed that the amount of mesopores tends to vary with the extrusion process, which has a positive impact on propylene selectivity. Experiments were carried out at 515 °C, with a weight hourly space velocity of 15 h−1, and at different Si/Al ratios ranging from 60 to 560. Different reaction times and water concentrations ranging from 30 to 2400 min and 0 to 60 wt%. respectively were considered as well. Additional experiments with ethylene (or propylene) and water were performed to elucidate side reactions. The results highlighted that the Si/Al ratio had an effect on dimethyl ether conversion, likewise on the products selectivity and coke deposition. At higher Si/Al ratio, DME conversion and selectivity in propylene increased, while the coke deposition decreased. It seems that propylene selectivity increases with regards to reaction times. Also, addition of water in the stream facilitates olefins desorption, thus reducing the amount of side-products (light saturated paraffins).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jiang G, Zhang L, Zhao Z, Zhou X, Duan A, Xu C, Gao J (2008) Appl Catal A Gen 340:176

    Article  CAS  Google Scholar 

  2. Phongsawat W, Netivorruksa B, Suriye K, Dokjampa S, Praserthdam P, Panpranot J (2012) J Nat Gas Chem 21:83

    Article  CAS  Google Scholar 

  3. Yan HT, Le Van Mao R (2010) Appl Catal A Gen 375:63

  4. Corma A, Melo FV, Sauvanaud L, Ortega F (2005) Catal Today 107–108:699

    Article  Google Scholar 

  5. Koempel H, Liebner W (2007) In: Noronha F, Schmal M, Sousa-Aguiar F (eds) Studies in surface science and catalysis, vol 167. Elsevier, Frankfurt an Main, pp 261–267

  6. Zhang S, Gong Y, Zhang L, Liu Y, Dou T, Xu J, Deng F (2015) Fuel Process Technol 129:130

    Article  CAS  Google Scholar 

  7. Ren T, Patel MK, Blok K (2008) Energy 33:817

    CAS  Google Scholar 

  8. Ren T, Patel M, Blok K (2006) Energy 31:425

    Article  CAS  Google Scholar 

  9. Keil JF (1999) Microporous Mesoporous Mater 29:49

    Article  CAS  Google Scholar 

  10. Stocker M (1999) Microporous Mesoporous Mater 29:3

    Article  CAS  Google Scholar 

  11. Marie-Rose SC, Perinet AL, Lavoie JM (2011) Bernardes MADS (ed) InTech

  12. Galadima A, Muraza O (2015) J Nat Gas Sci Eng 25:303

  13. Zhao TS, Takemoto T, Tsubaki N (2006) Catal Commun 7:647

    Article  CAS  Google Scholar 

  14. Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z (2008) J Catal 258:243

    Article  CAS  Google Scholar 

  15. Hu S, Gong Y, Xu Q, Liu X, Zhang Q, Zhang L, Dou T (2012) Catal Commun 28:95

    Article  CAS  Google Scholar 

  16. Froment G, Dehertog W, Marchi A (1992) In: Spivey JJ (ed) Catalysis, vol 9. RSC, pp 1–64

  17. Olah GA (1981) Pure Appl Chem 53:201

    Article  CAS  Google Scholar 

  18. Chang CD, Silvestri AJ (1977) J Catal 47:249

    Article  CAS  Google Scholar 

  19. Chang (1983) Hydrocarbons from methanol. Mobil Research and Development Corporation Central Research Division, New Jersey

  20. Tian P, Wei Y, Ye M, Liu Z (2015) ACS Catal 5:1922

    Article  CAS  Google Scholar 

  21. Kagi D (1981) J Catal 69:242

    Article  CAS  Google Scholar 

  22. Dahl IM, Kolboe S (1993) Catal Lett 20:329

    Article  CAS  Google Scholar 

  23. Dahl IM, Kolboe S (1994) J Catal 149:458

    Article  CAS  Google Scholar 

  24. Dahl IM, Kolboe S (1996) J Catal 161:304

  25. Arstad B, Kolboe S (2001) Catal Lett 71:209

    Article  CAS  Google Scholar 

  26. Arstad B, Kolboe S (2001) J Am Chem Soc 123:8137

    Article  CAS  Google Scholar 

  27. Haw JF, Song W, Marcus DM, Nicholas JB (2003) Acc Chem Res 36:317

    Article  CAS  Google Scholar 

  28. Wu W, Guo W, Xiao W, Luo M (2013) Fuel Process Technol 108:19

    Article  CAS  Google Scholar 

  29. Epelde E, Gayubo AG, Olazar M, Bilbao J, Aguayo AT (2014) Chem Eng J 251:80

    Article  CAS  Google Scholar 

  30. Jasra RV, Tyagi B, Badheka YM, Choudary VN, Bhat TSG (2003) Ind Eng Chem Res 42:3263

  31. Bhat YS, Das J, Halgeri AB (1995) Appl Catal A Gen 122:161

    Article  CAS  Google Scholar 

  32. Freiding J, Patcas F-C, Kraushaar-Czarnetzki B (2007) Appl Catal A Gen 328:210

    Article  CAS  Google Scholar 

  33. Wan V (2007) SRI Consulting, Menlo Park, California

  34. Xu M, Lunsford JH, Goodman DW, Bhattacharyya A (1997) Appl Catal A Gen 149:289

    Article  CAS  Google Scholar 

  35. Osman AI, Abu-Dahrieh JK, Rooney DW, Halawy SA, Mohamed MA, Abdelkader A (2012) Appl Catal B Environ 127:307

    Article  CAS  Google Scholar 

  36. ASTM (2011) D5758-01. Standard test method for determination of relative crystallinity of Zeolite ZSM-5 by X-ray diffraction

  37. Coelho A, Caeiro G, Lemos MANDA, Lemos F, Ribeiro FR (2013) Fuel 111:449

    Article  CAS  Google Scholar 

  38. Saito A, Foley HC (1995) Microporous Mater 3:543

    Article  CAS  Google Scholar 

  39. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41:207

    Article  CAS  Google Scholar 

  40. Groen JC, Peffer LAA, Perez-Ramırez J (2003) Microporous Mesoporous Mater 60:1

    Article  CAS  Google Scholar 

  41. Al-Dughaither AS, de Lasa H (2014) Ind Eng Chem Res 53:15303

    Article  CAS  Google Scholar 

  42. Al-Dughaither AS, De Lasa H (2014) Fuel 138:52

    Article  CAS  Google Scholar 

  43. Michels N-L, Mitchell S, Pérez-Ramírez J (2014) ACS Catal 4:2409

    Article  CAS  Google Scholar 

  44. Bjørgen M, Olsbye U, Kolboe S (2003) J Catal 215:30

    Article  Google Scholar 

  45. Rahimi N, Karimzadeh R (2011) Appl Catal A Gen 398:1

    Article  CAS  Google Scholar 

  46. Epelde E, Aguayo AT, Olazar M, Bilbao J, Gayubo AG (2014) Appl Catal A Gen 479:17

    Article  CAS  Google Scholar 

  47. Oudejans C, Oosterkamp FVD, Bekkum HV (1982) Appl Catal 3:109

    Article  CAS  Google Scholar 

  48. Gayubo AG, Aguayo AT, Castilla M, Moran AL, Bilbao J (2004) Chem Eng Commun 191:944

    Article  CAS  Google Scholar 

  49. Park TY, Froment GF (2001) Ind Eng Chem Res 40:4172

    Article  CAS  Google Scholar 

  50. Forester TR, Howe RF (1987) J Am Chem Soc 109:5076

    Article  CAS  Google Scholar 

  51. Marchi AJ, Froment GF (1991) Appl Catal 71:139

    Article  CAS  Google Scholar 

  52. Kustov L, Borovkov V, Kazansky V (1984) In: Jacobs PA, Jaeger NI, Jiru P, Kazanskii VB, Schulz-Ekloff G (eds) Structure and reactivity of modified zeolites. Elsevier, Amsterdam, pp 241–247

  53. Van den Berg JP, Wolthuizen JP, Van Hooff JHC (1983) J Catal 80:139

    Article  Google Scholar 

  54. Liu D, Cho WC, Kang NY, Lee YJ, Park HS, Shind CH, Park YK (2014) Catal Today 226:52

    Article  CAS  Google Scholar 

  55. Jungsuttiwong S, Limtrakul J, Truong TN (2005) J Phys Chem B 109:13342

    Article  CAS  Google Scholar 

  56. Sazama P, Tvaruzkova Z, Jirglova H, Sobalik Z (2008) Gédéon A, Massiani P, Babonneau F (eds) Studies in surface science and catalysis, vol 147B. Elsevier, pp 821–824

  57. Hsia Chen CS, Bridger RF (1996) J Catal 161:687

    Article  Google Scholar 

  58. Spoto G, Bordiga S, Ricchiardi G, Scarano D, Zecchina A, Borello E (1994) J Chem Soc Faraday Trans 90:2827

    Article  CAS  Google Scholar 

  59. Skupińska J (1991) Chem Rev 91:613

    Article  Google Scholar 

  60. Bolis V, Vedrin JC, Van de Berg JP, Wolthuizen JP, Derouane EG (1980) J Chem Soc Faraday Trans 1 76:1606

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to funders of the Industrial Research Chair on Cellulosic Ethanol and Biocommodities of the Université de Sherbrooke [Enerkem, Ethanol GreenField Quebec Inc, CRB Innovations and the Ministère de l’Énergie et des Ressources Naturelles du Québec (MERNQ)] as well as MITACS and EcoEII program Bio-065 project for providing the funding for Mrs Jennifer Lorena Gil Coba Ph.D work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Lavoie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil-Coba, J., Marie-Rose, S.C. & Lavoie, JM. Effect of Water Content and Catalysts Acidity in the Products Distribution During Propylene Synthesis with a Mixture of DME and Methanol. Catal Lett 146, 2534–2542 (2016). https://doi.org/10.1007/s10562-016-1887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1887-2

Keywords

Navigation