Catalysis Letters

, Volume 146, Issue 12, pp 2534–2542 | Cite as

Effect of Water Content and Catalysts Acidity in the Products Distribution During Propylene Synthesis with a Mixture of DME and Methanol

  • Jennifer Gil-Coba
  • Stéphane C. Marie-Rose
  • Jean-Michel Lavoie


Conversion of methanol and dimethyl ether to propylene was investigated in a fixed-bed reactor using an extruded H-ZSM-5 catalyst embedded in a matrix of silica. Physical and chemical properties of these catalysts have been determined by SEM, N2 adsorption–desorption, XRD, and NH3-TPD. Results showed that the amount of mesopores tends to vary with the extrusion process, which has a positive impact on propylene selectivity. Experiments were carried out at 515 °C, with a weight hourly space velocity of 15 h−1, and at different Si/Al ratios ranging from 60 to 560. Different reaction times and water concentrations ranging from 30 to 2400 min and 0 to 60 wt%. respectively were considered as well. Additional experiments with ethylene (or propylene) and water were performed to elucidate side reactions. The results highlighted that the Si/Al ratio had an effect on dimethyl ether conversion, likewise on the products selectivity and coke deposition. At higher Si/Al ratio, DME conversion and selectivity in propylene increased, while the coke deposition decreased. It seems that propylene selectivity increases with regards to reaction times. Also, addition of water in the stream facilitates olefins desorption, thus reducing the amount of side-products (light saturated paraffins).

Graphical Abstract


H-ZSM-5 Coke deposition Catalysts life-time MTO DTO Propylene 



The authors are grateful to funders of the Industrial Research Chair on Cellulosic Ethanol and Biocommodities of the Université de Sherbrooke [Enerkem, Ethanol GreenField Quebec Inc, CRB Innovations and the Ministère de l’Énergie et des Ressources Naturelles du Québec (MERNQ)] as well as MITACS and EcoEII program Bio-065 project for providing the funding for Mrs Jennifer Lorena Gil Coba Ph.D work.


  1. 1.
    Jiang G, Zhang L, Zhao Z, Zhou X, Duan A, Xu C, Gao J (2008) Appl Catal A Gen 340:176CrossRefGoogle Scholar
  2. 2.
    Phongsawat W, Netivorruksa B, Suriye K, Dokjampa S, Praserthdam P, Panpranot J (2012) J Nat Gas Chem 21:83CrossRefGoogle Scholar
  3. 3.
    Yan HT, Le Van Mao R (2010) Appl Catal A Gen 375:63Google Scholar
  4. 4.
    Corma A, Melo FV, Sauvanaud L, Ortega F (2005) Catal Today 107–108:699CrossRefGoogle Scholar
  5. 5.
    Koempel H, Liebner W (2007) In: Noronha F, Schmal M, Sousa-Aguiar F (eds) Studies in surface science and catalysis, vol 167. Elsevier, Frankfurt an Main, pp 261–267Google Scholar
  6. 6.
    Zhang S, Gong Y, Zhang L, Liu Y, Dou T, Xu J, Deng F (2015) Fuel Process Technol 129:130CrossRefGoogle Scholar
  7. 7.
    Ren T, Patel MK, Blok K (2008) Energy 33:817Google Scholar
  8. 8.
    Ren T, Patel M, Blok K (2006) Energy 31:425CrossRefGoogle Scholar
  9. 9.
    Keil JF (1999) Microporous Mesoporous Mater 29:49CrossRefGoogle Scholar
  10. 10.
    Stocker M (1999) Microporous Mesoporous Mater 29:3CrossRefGoogle Scholar
  11. 11.
    Marie-Rose SC, Perinet AL, Lavoie JM (2011) Bernardes MADS (ed) InTechGoogle Scholar
  12. 12.
    Galadima A, Muraza O (2015) J Nat Gas Sci Eng 25:303Google Scholar
  13. 13.
    Zhao TS, Takemoto T, Tsubaki N (2006) Catal Commun 7:647CrossRefGoogle Scholar
  14. 14.
    Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z (2008) J Catal 258:243CrossRefGoogle Scholar
  15. 15.
    Hu S, Gong Y, Xu Q, Liu X, Zhang Q, Zhang L, Dou T (2012) Catal Commun 28:95CrossRefGoogle Scholar
  16. 16.
    Froment G, Dehertog W, Marchi A (1992) In: Spivey JJ (ed) Catalysis, vol 9. RSC, pp 1–64Google Scholar
  17. 17.
    Olah GA (1981) Pure Appl Chem 53:201CrossRefGoogle Scholar
  18. 18.
    Chang CD, Silvestri AJ (1977) J Catal 47:249CrossRefGoogle Scholar
  19. 19.
    Chang (1983) Hydrocarbons from methanol. Mobil Research and Development Corporation Central Research Division, New JerseyGoogle Scholar
  20. 20.
    Tian P, Wei Y, Ye M, Liu Z (2015) ACS Catal 5:1922CrossRefGoogle Scholar
  21. 21.
    Kagi D (1981) J Catal 69:242CrossRefGoogle Scholar
  22. 22.
    Dahl IM, Kolboe S (1993) Catal Lett 20:329CrossRefGoogle Scholar
  23. 23.
    Dahl IM, Kolboe S (1994) J Catal 149:458CrossRefGoogle Scholar
  24. 24.
    Dahl IM, Kolboe S (1996) J Catal 161:304Google Scholar
  25. 25.
    Arstad B, Kolboe S (2001) Catal Lett 71:209CrossRefGoogle Scholar
  26. 26.
    Arstad B, Kolboe S (2001) J Am Chem Soc 123:8137CrossRefGoogle Scholar
  27. 27.
    Haw JF, Song W, Marcus DM, Nicholas JB (2003) Acc Chem Res 36:317CrossRefGoogle Scholar
  28. 28.
    Wu W, Guo W, Xiao W, Luo M (2013) Fuel Process Technol 108:19CrossRefGoogle Scholar
  29. 29.
    Epelde E, Gayubo AG, Olazar M, Bilbao J, Aguayo AT (2014) Chem Eng J 251:80CrossRefGoogle Scholar
  30. 30.
    Jasra RV, Tyagi B, Badheka YM, Choudary VN, Bhat TSG (2003) Ind Eng Chem Res 42:3263Google Scholar
  31. 31.
    Bhat YS, Das J, Halgeri AB (1995) Appl Catal A Gen 122:161CrossRefGoogle Scholar
  32. 32.
    Freiding J, Patcas F-C, Kraushaar-Czarnetzki B (2007) Appl Catal A Gen 328:210CrossRefGoogle Scholar
  33. 33.
    Wan V (2007) SRI Consulting, Menlo Park, CaliforniaGoogle Scholar
  34. 34.
    Xu M, Lunsford JH, Goodman DW, Bhattacharyya A (1997) Appl Catal A Gen 149:289CrossRefGoogle Scholar
  35. 35.
    Osman AI, Abu-Dahrieh JK, Rooney DW, Halawy SA, Mohamed MA, Abdelkader A (2012) Appl Catal B Environ 127:307CrossRefGoogle Scholar
  36. 36.
    ASTM (2011) D5758-01. Standard test method for determination of relative crystallinity of Zeolite ZSM-5 by X-ray diffractionGoogle Scholar
  37. 37.
    Coelho A, Caeiro G, Lemos MANDA, Lemos F, Ribeiro FR (2013) Fuel 111:449CrossRefGoogle Scholar
  38. 38.
    Saito A, Foley HC (1995) Microporous Mater 3:543CrossRefGoogle Scholar
  39. 39.
    Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41:207CrossRefGoogle Scholar
  40. 40.
    Groen JC, Peffer LAA, Perez-Ramırez J (2003) Microporous Mesoporous Mater 60:1CrossRefGoogle Scholar
  41. 41.
    Al-Dughaither AS, de Lasa H (2014) Ind Eng Chem Res 53:15303CrossRefGoogle Scholar
  42. 42.
    Al-Dughaither AS, De Lasa H (2014) Fuel 138:52CrossRefGoogle Scholar
  43. 43.
    Michels N-L, Mitchell S, Pérez-Ramírez J (2014) ACS Catal 4:2409CrossRefGoogle Scholar
  44. 44.
    Bjørgen M, Olsbye U, Kolboe S (2003) J Catal 215:30CrossRefGoogle Scholar
  45. 45.
    Rahimi N, Karimzadeh R (2011) Appl Catal A Gen 398:1CrossRefGoogle Scholar
  46. 46.
    Epelde E, Aguayo AT, Olazar M, Bilbao J, Gayubo AG (2014) Appl Catal A Gen 479:17CrossRefGoogle Scholar
  47. 47.
    Oudejans C, Oosterkamp FVD, Bekkum HV (1982) Appl Catal 3:109CrossRefGoogle Scholar
  48. 48.
    Gayubo AG, Aguayo AT, Castilla M, Moran AL, Bilbao J (2004) Chem Eng Commun 191:944CrossRefGoogle Scholar
  49. 49.
    Park TY, Froment GF (2001) Ind Eng Chem Res 40:4172CrossRefGoogle Scholar
  50. 50.
    Forester TR, Howe RF (1987) J Am Chem Soc 109:5076CrossRefGoogle Scholar
  51. 51.
    Marchi AJ, Froment GF (1991) Appl Catal 71:139CrossRefGoogle Scholar
  52. 52.
    Kustov L, Borovkov V, Kazansky V (1984) In: Jacobs PA, Jaeger NI, Jiru P, Kazanskii VB, Schulz-Ekloff G (eds) Structure and reactivity of modified zeolites. Elsevier, Amsterdam, pp 241–247Google Scholar
  53. 53.
    Van den Berg JP, Wolthuizen JP, Van Hooff JHC (1983) J Catal 80:139CrossRefGoogle Scholar
  54. 54.
    Liu D, Cho WC, Kang NY, Lee YJ, Park HS, Shind CH, Park YK (2014) Catal Today 226:52CrossRefGoogle Scholar
  55. 55.
    Jungsuttiwong S, Limtrakul J, Truong TN (2005) J Phys Chem B 109:13342CrossRefGoogle Scholar
  56. 56.
    Sazama P, Tvaruzkova Z, Jirglova H, Sobalik Z (2008) Gédéon A, Massiani P, Babonneau F (eds) Studies in surface science and catalysis, vol 147B. Elsevier, pp 821–824Google Scholar
  57. 57.
    Hsia Chen CS, Bridger RF (1996) J Catal 161:687CrossRefGoogle Scholar
  58. 58.
    Spoto G, Bordiga S, Ricchiardi G, Scarano D, Zecchina A, Borello E (1994) J Chem Soc Faraday Trans 90:2827CrossRefGoogle Scholar
  59. 59.
    Skupińska J (1991) Chem Rev 91:613CrossRefGoogle Scholar
  60. 60.
    Bolis V, Vedrin JC, Van de Berg JP, Wolthuizen JP, Derouane EG (1980) J Chem Soc Faraday Trans 1 76:1606CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jennifer Gil-Coba
    • 1
  • Stéphane C. Marie-Rose
    • 2
  • Jean-Michel Lavoie
    • 1
  1. 1.CRIEC-B, Université de SherbrookeSherbrookeCanada
  2. 2.Enerkem Inc.SherbrookeCanada

Personalised recommendations