Skip to main content

Advertisement

Log in

Selective Dehydrogenation of HCOOH on Zn-Decorated Pd(111) Surface Studied by First-Principles Calculations

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Density functional calculation has been used to study the influences of atomic arrangements of Zn/Pd(111) bimetallic surface on the activity and selectivity of formic acid decomposition processes. A high catalytic selectivity for non-CO pathway of formic acid decomposition was found on Zn-rich Zn/Pd(111) surface with an isolated Pd trimer ensemble; and the O–H activation is the predominant process via the reaction of \({\text{HCOOH}} \to {\text{HCOO}} + {\text{H}},\) while C–H activation is highly endothermic in the hydroxycarbonyl formation reaction via \({\text{HCOOH}}\to {\text{COOH}}+{\text{H}}\). Moreover, the high CO tolerance was found on the Zn-decorated Pd(111) surface with small Pd ensembles, and the desorption energy of CO is reduced to ~1.4 eV. These results indicate the electrocatalytic activity of Pd can be improved by incorporating the post transition metal of Zn through adjusting atomic composition and geometric distribution on surface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao TS (2009) Microfuel cells: principles and applications. Elsevier

  2. Minhua S (ed) (2013) Electrocatalysis in fuel cells: a non-and low-platinum approach. Springer, Dordrecht

    Google Scholar 

  3. Van den Berg AWC, Areán CO (2008) Chem Commun 668:668–681

    Article  Google Scholar 

  4. Singh AK, Singh S, Kumar A (2016) Catal Sci Technol 6:12–40

    Article  Google Scholar 

  5. Grasemann M, Laurenczy G (2012) Energy. Environ Sci 5:8171–8181

    CAS  Google Scholar 

  6. Osawa M, Komatsu K, Samjeské G, Uchida T, Ikeshoji T, Cuesta A, Gutiérrz C (2011) Angew Chem Int Ed 2011 50:1159–1163

    Article  CAS  Google Scholar 

  7. Xu J, Yuan D, Yang F, Mei D, Zhang Z, Chen YX (2013) Phys Chem Chem Phys 15:4367–4376

    Article  CAS  Google Scholar 

  8. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727

    Article  CAS  Google Scholar 

  9. Neurock M, Janik M, Wieckowski A (2009) Faraday Discuss 140:363–378

    Article  Google Scholar 

  10. Hong JW, Kim D, Lee YW, Kim M, Kang SW, Han SW (2011) Angew Chem Int Ed 50:8876–8880

    Article  CAS  Google Scholar 

  11. Gu X, Lu ZH, Jiang H, Akita T, Xu Q (2011) J Am Chem Soc 133:11822–11825

    Article  CAS  Google Scholar 

  12. Liu Y, Wang L, Wang G, Deng C, Wu B, Gao Y (2010) J Phys Chem C 114:21417–21422

    Article  CAS  Google Scholar 

  13. Yu WY, Mullen GM, Flaherty DW, Mullins CB (2014) J Am Chem Soc 136:11070–11078

    Article  CAS  Google Scholar 

  14. Yuan DW, Liu ZR (2013) J Power Sources 224:241–249

    Article  CAS  Google Scholar 

  15. Duan T, Zhang R R, Ling L, Wang B (2016) J Phys Chem C 120:2234–2246

    Article  CAS  Google Scholar 

  16. Zhong W, Qi Y, Deng M (2015) J Power Sources 278:203–212

    Article  CAS  Google Scholar 

  17. Park IS, Lee KS, Choi JH, Park HY, Sung YE (2007) J Phys Chem C 111:19126–19133

    Article  CAS  Google Scholar 

  18. Iyyamperumal R, Zhang L, Henkelman G, Crooks RM (2013) J Am Chem Soc 135:5521–5524

    Article  CAS  Google Scholar 

  19. Holade Y, Lehoux A, Remita H, Kokoh KB, Napporn TW (2015) J Phys Chem C 119:27529–27539

    Article  CAS  Google Scholar 

  20. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Nat Nanotechnol 6:302–307

    Article  CAS  Google Scholar 

  21. Cho J, Lee S, Han J, Yoon SP, Nam SW, Choi SH, Lee K, Ham HC (2014) J Phys Chem C 118:22553–22560

    Article  CAS  Google Scholar 

  22. Dai L, S. Zou S (2011) J Power Sources 196:9369–9372

    Article  CAS  Google Scholar 

  23. He F, Li K, Xie G, Wang Y, Jiao M, Tang H, Wu Z (2016) J Power Sources 316:8–16

    Article  CAS  Google Scholar 

  24. QinY, Wang J, Meng F, Wang L, Zhang X (2013) Chem Commun 49:10028–10030

    Article  Google Scholar 

  25. Duan S, Ji YF, Fang PP, Chen YX, Xu X, Luo Y, Tian ZQ (2013) Phys Chem Chem Phys 15:4625–4633

    Article  CAS  Google Scholar 

  26. Wang ZL, Ping Y, Yan JM, Wang HL, Jiang Q (2014) Int J Hydrogen Energy 39:4850–4856

    Article  CAS  Google Scholar 

  27. Wang ZL, Yan JM, Ping Y, Wang HL, Zheng WT, Jiang Q (2013) Angew Chem Int Ed 52:4406–4409

    Article  CAS  Google Scholar 

  28. Kitchin JR, Nørskov JK, Barteau MA, Chen JG 2004) Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  29. Rodriguez JA, Goodman DW (1992) Science 257:897–903

    Article  CAS  Google Scholar 

  30. Lee S, Cho J, Jang JH, Han J, Yoon SP, Nam SW, Lim TH, Ham HC (2016) ACS Catal 6:134–142

    Article  CAS  Google Scholar 

  31. Rodriguez JA (1996) Surf Sci Rep 24:223–287

    Article  CAS  Google Scholar 

  32. Maroun F, Ozanam F, Magnussen OM, Behm RJ (2001) Science 293:1811–1814

    Article  CAS  Google Scholar 

  33. Qi Y, Gao J, Zhang D, Liu C (2015) RSC Adv 5:21170–21177

    Article  CAS  Google Scholar 

  34. Gong M, Li F, Yao Z, Zhang S, Dong J, Chen Y, Tang Y (2015) Nanoscale 7:4894–4899

    Article  CAS  Google Scholar 

  35. Liu Y, Abe H, Edvenson HM, Ghosh T, Disalvo FJ, Abruña HD (2010) Phys Chem Chem Phys 12:12978–12986

    Article  CAS  Google Scholar 

  36. Pašti I, Mentus S (2009) Phys Chem Chem Phys 11:6225–6233

    Article  Google Scholar 

  37. Perales-Rondón JV, Ferre-Vilaplana A, Feliu JM, Herrero E (2014) J Am Chem Soc 136:13110–13113

    Article  Google Scholar 

  38. Ferre-Vilaplana A, Perales-Rondón JV, Feliu JM, Herrero E (2015) ACS Catal 5:645–654

    Article  CAS  Google Scholar 

  39. Bertin E, Garbarino S, Guay D (2015) J Power Sources 299:315–323

    Article  CAS  Google Scholar 

  40. Jeroro E, Vohs JM (2009) Catal Lett 130:271–277

    Article  CAS  Google Scholar 

  41. Figueiredo MC, Melander M, Solla-Gullon J, Kallio T, Laasonen K (2014) J Phys Chem C 118:23100–23110

    Article  CAS  Google Scholar 

  42. Oana M, Hoffmann R, Abruña HD, DiSalvo FJ (2005) Surf Sci 574:1–16

    Article  CAS  Google Scholar 

  43. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  44. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  45. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  47. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  48. Schenter GK, Mills G, Jónsson H (1994) J Chem Phys 101:8964–8971

    Article  CAS  Google Scholar 

  49. Mills G, Jónsson H, Schenter GK (1995) Surf Sci 324:305–337

    Article  CAS  Google Scholar 

  50. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  51. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  52. Henkelman G, Jónsson H (1999) J Chem Phys 111:7010–7022

    Article  CAS  Google Scholar 

  53. Hu C, Ting SW, Chan KY, Huang W (2012) Int J Hydrogen Energy 37:15956–15965

    Article  CAS  Google Scholar 

  54. Wang Y, Qi Y, Zhang D, Liu C (2014) J Phys Chem C 118:2067–2076

    Article  CAS  Google Scholar 

  55. Yuan DW, Gong XG, Wu RQ (2007) Phys Rev B 75:085428

    Article  Google Scholar 

  56. Chen Z, Neyman KM, Gordienko AB, Rösch N (2003) Phys Rev B 68:075417

    Article  Google Scholar 

  57. Rodriguez JA (1994) J Phys Chem 98:5758:5764

    Google Scholar 

  58. Weilach C, Kozlov SM, Holzapfel HH, Föttinger KF, Neyman KM, Rupprechter G (2012) J Phys Chem C 116:18768–18778

    Article  CAS  Google Scholar 

  59. Anderson PW (1961) Phys Rev 124:41–53

    Article  CAS  Google Scholar 

  60. Newns DM (1969) Phys Rev 178:1123–1135

    Article  CAS  Google Scholar 

  61. Huang Y, Ding W, Chen ZX (2010) J Chem Phys 133:214702

    Article  Google Scholar 

  62. Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlögl R, Memmel N, Zemlyanov D, Rupprechter G, Klötzer B (2010) Angew Chem Int Ed 49:3224–3227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11674091) and the development plan for young teacher of Hunan University. The calculations were performed using the National Supercomputing Center in Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingwang Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3926 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, D., Li, J. & Liu, L. Selective Dehydrogenation of HCOOH on Zn-Decorated Pd(111) Surface Studied by First-Principles Calculations. Catal Lett 146, 2348–2356 (2016). https://doi.org/10.1007/s10562-016-1866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1866-7

Keywords

Navigation