Cutting Cost Technology for the Preparation of Biodiesel Using Environmentally Benign and Cheaper Catalyst


Herein, a promising egg shell derived catalyst (ESDC) was prosperously developed by calcination of egg shell powder and exercised to the transesterification of Helianthus annuus L oil for the synthesis of biodiesel fuel. Synthesized egg shell derived catalyst affirmed remarkable catalytic activity for transesterification of Helianthus annuus L oil with 2.5 % catalyst dose (w/w). ESDC was duly characterized by FT-IR, XRD, BET, TPD-CO2, TGA and SEM analysis. While, Helianthus annuus L oil and biodiesel were duly characterized by FT-IR as well as 1H and 13C NMR spectroscopic techniques. From the obtained results, it can be concluded that 1:8 oil to methanol molar ratio revealed 99.2 % biodiesel yield in 2 h reaction time with 2.5 % catalyst dosage at 65 °C reaction temperature.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10



Egg shell derived catalyst


X-ray diffraction


Thermogravimetric analysis


Scanning electron microscope


Temperature programmed desorption


Tetra methyl silane


High performance liquid chromatography


Gas chromatography-flame ionization detector


Fatty acid methyl esters


Nuclear magnetic resonance




  1. 1.

    Vujicic DJ, Comic D, Zarubica A, Micic R, Boskovic G (2010) Fuel 89:2054

    CAS  Article  Google Scholar 

  2. 2.

    Xie W, Yang Z, Chun H (2007) Ind Eng Chem Res 46:7942

    CAS  Article  Google Scholar 

  3. 3.

    Kansedo J, Lee TK, Bhatia S (2009) Biomass Bioenergy 33:271

    CAS  Article  Google Scholar 

  4. 4.

    Zhang P, Han Q, Fan M, Jiang P (2014) Appl Surf Sci 317:1125

    CAS  Article  Google Scholar 

  5. 5.

    Zhang J, Chen S, Yang R, Yan Y (2010) Fuel 89:2939

    CAS  Article  Google Scholar 

  6. 6.

    Tan YH, Abdullah MO, Hipolito CN, Taufiq-Yap YH (2015) Appl Energy 160:58

    CAS  Article  Google Scholar 

  7. 7.

    Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887

    CAS  Article  Google Scholar 

  8. 8.

    Gao L, Teng G, Xiao G, Wei R (2010) Biomass Bioenergy 34:1283

    CAS  Article  Google Scholar 

  9. 9.

    Zabeti M, Daud W.M.A.W, Aroua M.K (2010) Fuel Process Technol 91:243

    CAS  Article  Google Scholar 

  10. 10.

    Soetaredjo FE, Ayucitra A, Ismadji S, Maukar AL (2011) Appl Clay Sci 53:341

    CAS  Article  Google Scholar 

  11. 11.

    Salamatinia B, Mootabadi H, Bhatia S, Abdullah A.Z (2010) Fuel Process Technol 91:441

    CAS  Article  Google Scholar 

  12. 12.

    Trakarnpruk W, Porntangjitlikit S (2008) Renew Energy 33:1558

    CAS  Article  Google Scholar 

  13. 13.

    Hameed B.H, Lai L.F, Chin L. H (2009) Fuel Process Technol 90:606

    CAS  Article  Google Scholar 

  14. 14.

    Wan Z, Hameed BH (2011) Bioresour Technol 102:2659

    CAS  Article  Google Scholar 

  15. 15.

    Cho YB, Seo G (2010) Bioresour Technol 101:8515

    CAS  Article  Google Scholar 

  16. 16.

    Baroutian S, Aroua M.K, Raman A.A.A, Sulaiman N.M.N (2010) Fuel Process Technol 91:1378

    CAS  Article  Google Scholar 

  17. 17.

    Wei Z, Xu C, Li B (2009) Bioresource Technol 100:2883

    CAS  Article  Google Scholar 

  18. 18.

    Buasri A, Chaiyut N, Loryuenyong V, Wongweang C, Khamsrisuk S (2013) Sustain Energy 2:7

    Google Scholar 

  19. 19.

    Lee HV, Juan JC, Abdullah N.F.B, Rabiah Nizah MF, Taufiq-Yap YH (2014) Chem Cent J 8:30

    Article  Google Scholar 

  20. 20.

    Canakc M (2008) Bioresour Technol 98:183

    Article  Google Scholar 

  21. 21.

    Zhang JJ, Jiang LF (2008) Bioresour Technol 99:8995

    CAS  Article  Google Scholar 

  22. 22.

    Garcia Moreno P, Khanum M, Guadix A, Guadix EM (2014) Renew Energy 68:618

    CAS  Article  Google Scholar 

  23. 23.

    Boey P.L, Maniam G.P, Hamid S.A (2011) Chem Eng J 168:15.

    CAS  Article  Google Scholar 

  24. 24.

    Hindryawati N, Maniam G.P, Karim M.R, Chong K.F (2014) Engg Sci Techno 17:95

    Google Scholar 

  25. 25.

    Talebian KA, Nor aishah SA, Hossein M (2013) Appl Energy 104:683

    Article  Google Scholar 

  26. 26.

    Liu X (2008) Fuel 87:216

    CAS  Article  Google Scholar 

  27. 27.

    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    CAS  Article  Google Scholar 

  28. 28.

    Viriya-empikul N, Krasa P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K (2010) Bioresour Technol 101:3765

    CAS  Article  Google Scholar 

  29. 29.

    Sharma Y. C, Singh B, Korstad J (2010) Energy Fuels 24:3223

    CAS  Article  Google Scholar 

  30. 30.

    Viriya-empikul N, Krasae P, Nualpaeng W, Yoosuk B, Faungnawakij K (2012) Fuel 92:239

    CAS  Article  Google Scholar 

  31. 31.

    Niju S, Meera K.M, Begum S, Anantharaman N (2014) J Saudi Chem Soc 18:702

    Article  Google Scholar 

  32. 32.

    Nair P, Sharma Y.C, Singh B, Upadhyay S.N (2012) J Cleaner Prod 30:82

    Article  Google Scholar 

Download references


We gratefully acknowledge the financial furtherance from NIT, Surat and CSIR, New Delhi, India (Sanction Order Letter No. 02(0170)/13/EMR-II). For analytical services, we wish to thank, Mr. Sagar, MED, NIT, Surat, A. Narayanan, IIT, Madras, The Director, SDPARC, Kim, Surat, and Prof. Anamik Shah, COE, NFDD Center, Saurastra University, Rajkot, Gujarat, India.

Author information



Corresponding author

Correspondence to Bharatkumar Z. Dholakiya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1039 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savaliya, M.L., Bhakhar, M.S. & Dholakiya, B.Z. Cutting Cost Technology for the Preparation of Biodiesel Using Environmentally Benign and Cheaper Catalyst. Catal Lett 146, 2313–2323 (2016).

Download citation


  • Egg shell waste
  • Helianthus annuus L oil
  • Solid alkali catalyst
  • Surface morphology
  • Crystallographic planes
  • Thermal degradation