Catalysis Letters

, Volume 146, Issue 11, pp 2313–2323 | Cite as

Cutting Cost Technology for the Preparation of Biodiesel Using Environmentally Benign and Cheaper Catalyst

  • Mehulkumar L. Savaliya
  • Mathurkumar S. Bhakhar
  • Bharatkumar Z. DholakiyaEmail author


Herein, a promising egg shell derived catalyst (ESDC) was prosperously developed by calcination of egg shell powder and exercised to the transesterification of Helianthus annuus L oil for the synthesis of biodiesel fuel. Synthesized egg shell derived catalyst affirmed remarkable catalytic activity for transesterification of Helianthus annuus L oil with 2.5 % catalyst dose (w/w). ESDC was duly characterized by FT-IR, XRD, BET, TPD-CO2, TGA and SEM analysis. While, Helianthus annuus L oil and biodiesel were duly characterized by FT-IR as well as 1H and 13C NMR spectroscopic techniques. From the obtained results, it can be concluded that 1:8 oil to methanol molar ratio revealed 99.2 % biodiesel yield in 2 h reaction time with 2.5 % catalyst dosage at 65 °C reaction temperature.

Graphical Abstract


Egg shell waste Helianthus annuus L oil Solid alkali catalyst Surface morphology Crystallographic planes Thermal degradation 



Egg shell derived catalyst


X-ray diffraction


Thermogravimetric analysis


Scanning electron microscope


Temperature programmed desorption


Tetra methyl silane


High performance liquid chromatography


Gas chromatography-flame ionization detector


Fatty acid methyl esters


Nuclear magnetic resonance





We gratefully acknowledge the financial furtherance from NIT, Surat and CSIR, New Delhi, India (Sanction Order Letter No. 02(0170)/13/EMR-II). For analytical services, we wish to thank, Mr. Sagar, MED, NIT, Surat, A. Narayanan, IIT, Madras, The Director, SDPARC, Kim, Surat, and Prof. Anamik Shah, COE, NFDD Center, Saurastra University, Rajkot, Gujarat, India.

Supplementary material

10562_2016_1861_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1039 KB)


  1. 1.
    Vujicic DJ, Comic D, Zarubica A, Micic R, Boskovic G (2010) Fuel 89:2054CrossRefGoogle Scholar
  2. 2.
    Xie W, Yang Z, Chun H (2007) Ind Eng Chem Res 46:7942CrossRefGoogle Scholar
  3. 3.
    Kansedo J, Lee TK, Bhatia S (2009) Biomass Bioenergy 33:271CrossRefGoogle Scholar
  4. 4.
    Zhang P, Han Q, Fan M, Jiang P (2014) Appl Surf Sci 317:1125CrossRefGoogle Scholar
  5. 5.
    Zhang J, Chen S, Yang R, Yan Y (2010) Fuel 89:2939CrossRefGoogle Scholar
  6. 6.
    Tan YH, Abdullah MO, Hipolito CN, Taufiq-Yap YH (2015) Appl Energy 160:58CrossRefGoogle Scholar
  7. 7.
    Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887CrossRefGoogle Scholar
  8. 8.
    Gao L, Teng G, Xiao G, Wei R (2010) Biomass Bioenergy 34:1283CrossRefGoogle Scholar
  9. 9.
    Zabeti M, Daud W.M.A.W, Aroua M.K (2010) Fuel Process Technol 91:243CrossRefGoogle Scholar
  10. 10.
    Soetaredjo FE, Ayucitra A, Ismadji S, Maukar AL (2011) Appl Clay Sci 53:341CrossRefGoogle Scholar
  11. 11.
    Salamatinia B, Mootabadi H, Bhatia S, Abdullah A.Z (2010) Fuel Process Technol 91:441CrossRefGoogle Scholar
  12. 12.
    Trakarnpruk W, Porntangjitlikit S (2008) Renew Energy 33:1558CrossRefGoogle Scholar
  13. 13.
    Hameed B.H, Lai L.F, Chin L. H (2009) Fuel Process Technol 90:606CrossRefGoogle Scholar
  14. 14.
    Wan Z, Hameed BH (2011) Bioresour Technol 102:2659CrossRefGoogle Scholar
  15. 15.
    Cho YB, Seo G (2010) Bioresour Technol 101:8515CrossRefGoogle Scholar
  16. 16.
    Baroutian S, Aroua M.K, Raman A.A.A, Sulaiman N.M.N (2010) Fuel Process Technol 91:1378CrossRefGoogle Scholar
  17. 17.
    Wei Z, Xu C, Li B (2009) Bioresource Technol 100:2883CrossRefGoogle Scholar
  18. 18.
    Buasri A, Chaiyut N, Loryuenyong V, Wongweang C, Khamsrisuk S (2013) Sustain Energy 2:7Google Scholar
  19. 19.
    Lee HV, Juan JC, Abdullah N.F.B, Rabiah Nizah MF, Taufiq-Yap YH (2014) Chem Cent J 8:30CrossRefGoogle Scholar
  20. 20.
    Canakc M (2008) Bioresour Technol 98:183CrossRefGoogle Scholar
  21. 21.
    Zhang JJ, Jiang LF (2008) Bioresour Technol 99:8995CrossRefGoogle Scholar
  22. 22.
    Garcia Moreno P, Khanum M, Guadix A, Guadix EM (2014) Renew Energy 68:618CrossRefGoogle Scholar
  23. 23.
    Boey P.L, Maniam G.P, Hamid S.A (2011) Chem Eng J 168:15.CrossRefGoogle Scholar
  24. 24.
    Hindryawati N, Maniam G.P, Karim M.R, Chong K.F (2014) Engg Sci Techno 17:95Google Scholar
  25. 25.
    Talebian KA, Nor aishah SA, Hossein M (2013) Appl Energy 104:683CrossRefGoogle Scholar
  26. 26.
    Liu X (2008) Fuel 87:216CrossRefGoogle Scholar
  27. 27.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  28. 28.
    Viriya-empikul N, Krasa P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K (2010) Bioresour Technol 101:3765CrossRefGoogle Scholar
  29. 29.
    Sharma Y. C, Singh B, Korstad J (2010) Energy Fuels 24:3223CrossRefGoogle Scholar
  30. 30.
    Viriya-empikul N, Krasae P, Nualpaeng W, Yoosuk B, Faungnawakij K (2012) Fuel 92:239CrossRefGoogle Scholar
  31. 31.
    Niju S, Meera K.M, Begum S, Anantharaman N (2014) J Saudi Chem Soc 18:702CrossRefGoogle Scholar
  32. 32.
    Nair P, Sharma Y.C, Singh B, Upadhyay S.N (2012) J Cleaner Prod 30:82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mehulkumar L. Savaliya
    • 1
  • Mathurkumar S. Bhakhar
    • 2
  • Bharatkumar Z. Dholakiya
    • 1
    Email author
  1. 1.Department of Applied ChemistrySardar Vallabhbhai National Institute of Technology (SVNIT)SuratIndia
  2. 2.Department of Chemical EngineeringG.H Patel College of Engineering and TechnologyAnandIndia

Personalised recommendations