Skip to main content
Log in

One-Step Synthesis of Functionalized ZSM-12 Zeolite as a Hybrid Basic Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Preparation of ZSM-12 zeolite (MTW structure) functionalized with the organosilane surfactant [3-(trimethoxysilyl)propyl]octadecyldimethylammonium chloride (TPOAC) was performed in a single synthesis step employing hydrothermal crystallization. Investigation was made of the effects of Si/Al and TPOAC/SiO2 ratios on crystallinity, morphology, and catalytic activity. The MTW structure without the presence of TPOAC was obtained using Si/Al ratios ranging from 50 to 120, with values smaller than 50 favoring crystallization of the BEA phase, and values greater than 120 leading to the formation of cristobalite, a crystalline silica phase. For syntheses performed in the presence of TPOAC, an increase in its amount from 3 to 6 % enabled formation of the pure MTW structure, at all Si/Al ratios. The addition of TPOAC led to significant changes in the morphology and hydrophobicity of the zeolite particles. The effect of functionalization with TPOAC on the catalytic performance of the zeolites was evaluated using the Knoevenagel condensation between butyraldehyde and ethyl cyanoacetate as a model reaction. It was found that the presence of TPOAC in the ZSM-12 zeolite substantially increased the catalytic activity. Evaluation was also made of the type of solvent used in the reaction, and high activities were obtained in the presence of polar protic solvents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. De Baerdemaeker T, Müller U, Yilmaz B (2011) Alkali-free synthesis of Al-MTW using 4-cyclohexyl-1,1-dimethylpiperazinium hydroxide as structure directing agent. Microporous Mesoporous Mater 143:477–481. doi:10.1016/j.micromeso.2011.03.018

    Article  Google Scholar 

  2. LaPierre RB, Rohrman AC, Schlenker JL et al (1985) The framework topology of ZSM-12: a high-silica zeolite. Zeolites 5:346–348. doi:10.1016/0144-2449(85)90121-6

    Article  CAS  Google Scholar 

  3. Jacobs PA, Martens JA (1987) Chapter IX: High-silica zeolites with mtw framework topology. In: Delmon B, Yates JT (eds) Studies in surface science and catalysis. Elsevier, New York, pp 297–319

    Google Scholar 

  4. Čejka J, Mintova S (2007) Perspectives of micro/mesoporous composites in catalysis. Catal Rev 49:457–509. doi:10.1080/01614940701583240

    Article  Google Scholar 

  5. Čejka J, Centi G, Perez-Pariente J, Roth WJ (2012) Zeolite-based materials for novel catalytic applications: opportunities, perspectives and open problems. Catal Today 179:2–15. doi:10.1016/j.cattod.2011.10.006

    Article  Google Scholar 

  6. Na K, Choi M, Ryoo R (2013) Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater 166:3–19. doi:10.1016/j.micromeso.2012.03.054

    Article  CAS  Google Scholar 

  7. Choi M, Cho HS, Srivastava R et al (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723. doi:10.1038/nmat1705

    Article  CAS  Google Scholar 

  8. Oliveira AC, Martins L, Cardoso D (2009) Basic catalytic properties of as-synthesized molecular sieves. Microporous Mesoporous Mater 120:206–213. doi:10.1016/j.micromeso.2008.10.033

    Article  CAS  Google Scholar 

  9. Almeida KA, Landers R, Cardoso D (2012) Properties of faujasite zeolites containing methyl-substituted ammonium cations. J Catal 294:151–160. doi:10.1016/j.jcat.2012.07.017

    Article  CAS  Google Scholar 

  10. Chaves TF, Pastore HO, Hammer P, Cardoso D (2015) As-synthesized TEA-BEA zeolite: effect of Si/Al ratio on the Knoevenagel condensation. Microporous Mesoporous Mater 202:198–207. doi:10.1016/j.micromeso.2014.09.058

    Article  CAS  Google Scholar 

  11. Jaenicke S, Chuah GK, Lin XH, Hu XC (2000) Organic–inorganic hybrid catalysts for acid- and base-catalyzed reactions. Microporous Mesoporous Mater 35–36:143–153

    Article  Google Scholar 

  12. Hruby SL, Shanks BH (2009) Acid-base cooperativity in condensation reactions with functionalized mesoporous silica catalysts. J Catal 263:181–188. doi:10.1016/j.jcat.2009.02.011

    Article  CAS  Google Scholar 

  13. Román-Leshkov Y, Moliner M, Davis ME (2010) Hybrid organic–inorganic solids that show shape selectivity. Chem Mater 22:2646–2652. doi:10.1021/cm100108e

    Article  Google Scholar 

  14. Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  15. Sheldon RA (2007) The E Factor: fifteen years on. Green Chem 9:1273. doi:10.1039/b713736m

    Article  CAS  Google Scholar 

  16. Gopal S, Yoo K, Smirniotis PG (2001) Synthesis of A1-rich ZSM-12 using TEAOH as template. Microporous Mesoporous Mater 49:149–156. doi:10.1016/S1387-1811(01)00412-7

    Article  CAS  Google Scholar 

  17. Carvalho KTG, Urquieta-Gonzalez E a. (2015) Microporous–mesoporous ZSM-12 zeolites: synthesis by using a soft template and textural, acid and catalytic properties. Catal Today 243:92–102. doi:10.1016/j.cattod.2014.09.025

    Article  CAS  Google Scholar 

  18. Yoo K, Kashfi R, Gopal S et al (2003) TEABr directed synthesis of ZSM-12 and its NMR characterization. Microporous Mesoporous Mater 60:57–68. doi:10.1016/S1387-1811(03)00317-2

    Article  CAS  Google Scholar 

  19. Perez-Pariente J, Martens JA, Jacobs PA. (1988) Factors affecting the synthesis efficiency of zeolite BETA from aluminosilicate gels containing alkali and tetraethylammonium ions. Zeolites 8:46–53. doi:10.1016/S0144-2449(88)80029-0

    Article  CAS  Google Scholar 

  20. Camblor M, Corma a, Valencia S (1998) Characterization of nanocrystalline zeolite beta. Microporous Mesoporous Mater 25:59–74. doi:10.1016/S1387-1811(98)00172-3

    Article  CAS  Google Scholar 

  21. Mintova S, Valtchev V, Onfroy T et al (2006) Variation of the Si/Al ratio in nanosized zeolite beta crystals. Microporous Mesoporous Mater 90:237–245. doi:10.1016/j.micromeso.2005.11.026

    Article  CAS  Google Scholar 

  22. Pham TCT, Kim HS, Yoon KB (2011) Growth of uniformly oriented silica MFI and BEA zeolite films on substrates. Science 334:1533–1538. doi:10.1126/science.1212472

    Article  CAS  Google Scholar 

  23. Chaikittisilp W, Yokoi T, Okubo T (2008) Crystallization behavior of zeolite beta with balanced incorporation of silicon and aluminum synthesized from alkali metal cation-free mixture. Microporous Mesoporous Mater 116:188–195. doi:10.1016/j.micromeso.2008.04.001

    Article  CAS  Google Scholar 

  24. Bourgeat-Lami E, Di Renzo F, Fajula F et al (1992) Mechanism of the thermal decomposition of tetraethylammonium in zeolite beta. J Phys Chem 96:3807–3811

    Article  CAS  Google Scholar 

  25. Rao PHP, y Leon CL, Ueyama K, Matsukata M (1998) Synthesis of BEA by dry gel conversion and its characterization. Microporous Mesoporous Mater 21:305–313. doi:10.1016/S1387-1811(98)00033-X

    Article  Google Scholar 

  26. Parker LM, Bibby DM, Patterson JE (1984) Thermal decomposition of ZSM-5 and silicalite precursors. Zeolites 4:168–174. doi:10.1016/0144-2449(84)90056-3

    Article  CAS  Google Scholar 

  27. Wang C, Yang M, Tian P et al (2015) Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J Mater Chem A 3:5608–5616. doi:10.1039/C4TA06124A

    Article  CAS  Google Scholar 

  28. Soulard M, Bilger S, Kessler H, Guth JL (1991) Characterization of the products remaining in the solid after partial thermal decomposition of Pr4NF-, Pr3NHF-, and Pr4NOH-MFI precursors. Zeolites 11:107–115. doi:10.1016/0144-2449(91)80403-M

    Article  CAS  Google Scholar 

  29. Condon JB (2006) Surface area and porosity determinations by physisorption. Elsevier, Amsterdam

    Google Scholar 

  30. Katovic A, Chiche BH, Renzo FD et al (2000) Influence of the aluminium content on the acidity and catalytic activity of MTW-type zeolites. In: Avelino Corma Francisco V, Melo SM, Fierro JLG (eds) 12th international congress on catalysis proceedings of the 12th ICC. Elsevier, Amsterdam, pp 857–862

    Chapter  Google Scholar 

  31. Kamimura Y, Itabashi K, Okubo T (2012) Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “Green MTW” from sodium aluminosilicate gel systems. Microporous Mesoporous Mater 147:149–156. doi:10.1016/j.micromeso.2011.05.038

    Article  Google Scholar 

  32. Groen JC, Moulijn JA, Perez-Ramirez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16:2121–2131. doi:10.1039/B517510K

    Article  CAS  Google Scholar 

  33. Li H-X, Camblor M, Davis ME (1994) Synthesis of zeolites using organosilicon compounds as structure-directing agents. Microporous Mater 3:117–121. doi:10.1016/0927-6513(94)00013-1

    Article  CAS  Google Scholar 

  34. Jones CW, Tsuji K, Davis ME (1999) Organic-functionalized molecular sieves (OFMSs): II. Synthesis, characterization and the transformation of OFMSs containing non-polar functional groups into solid acids. Microporous Mesoporous Mater 33:223–240. doi:10.1016/S1387-1811(99)00141-9

    Article  CAS  Google Scholar 

  35. Ungureanu S, Birot M, Laurent G et al (2007) One-pot syntheses of the first series of emulsion based hierarchical hybrid organic–inorganic open-cell monoliths possessing tunable functionality (organo-Si(HIPE) series). Chem Mater 19:5786–5796. doi:10.1021/cm701984t

    Article  CAS  Google Scholar 

  36. Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2:457–460. doi:10.1038/nmat924

    Article  CAS  Google Scholar 

  37. Zapata P, Faria J, Ruiz MP et al (2012) Hydrophobic zeolites for biofuel upgrading reactions at the liquid–liquid interface in water/oil emulsions. J Am Chem Soc 134:8570–8578. doi:10.1021/ja3015082

    Article  CAS  Google Scholar 

  38. Serra-Crespo P, Ramos-Fernandez EV, Gascon J, Kapteijn F (2011) Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties. Chem Mater 23:2565–2572. doi:10.1021/cm103644b

    Article  CAS  Google Scholar 

  39. Kalbasi RJ, Kolahdoozan M, Rezaei M (2011) Synthesis and characterization of PVAm/SBA-15 as a novel organic–inorganic hybrid basic catalyst. Mater. Chem Phys 125:784–790. doi:10.1016/j.matchemphys.2010.09.058

    CAS  Google Scholar 

  40. Gascon J, Aktay U, Hernandez-Alonso MD et al (2009) Amino-based metal–organic frameworks as stable, highly active basic catalysts. J Catal 261:75–87. doi:10.1016/j.jcat.2008.11.010

    Article  CAS  Google Scholar 

  41. Rodriguez I, Sastre G, a C, Iborra S (1999) Catalytic activity of proton sponge: application to Knoevenagel condensation reactions. J Catal 183:14–23

    Article  CAS  Google Scholar 

  42. Reichardt, C., Welton T (2003) Solvents and solvent effects in organic chemistry, 3, Wiley, Weinheim doi:10.1002/9783527632220.ch4

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian National Council for Scientific and Technological Development (CNPq, processes 149616/2010-4 and 142883/2009-3) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago F. Chaves.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 145 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, T.F., Carvalho, K.T.G., Urquieta-González, E.A. et al. One-Step Synthesis of Functionalized ZSM-12 Zeolite as a Hybrid Basic Catalyst. Catal Lett 146, 2200–2213 (2016). https://doi.org/10.1007/s10562-016-1847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1847-x

Keywords

Navigation