Skip to main content
Log in

Synthesis of Bimetallic MOFs MIL-100(Fe-Mn) as an Efficient Catalyst for Selective Catalytic Reduction of NO x with NH3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, we have successfully synthesized bimetallic MOFs of MIL-100(Fe-Mn) for SCR of NOx with NH3 via a hydrothermal method The catalyst were characterized by XRD, EDX, N2 adsorption(BET), SEM, in situ FT-IR and XPS. MIL-100(Fe-Mn) catalyst exhibited higher NOx conversion than either of its monometallic counterparts of MIL-100(Fe) and MIL-100(Mn). MIL-100(Fe-Mn) displayed excellent low-temperature activity, which achieved a maximum NOx conversion of 96 % at 260 °C. Moreover, MIL-100(Fe-Mn) showed a satisfactory stability and a good capacity of resisting SO2 and H2O. During NH3-SCR process, a slightly raised NO x conversion (approximately 7 %) was observed in the presence of H2O and SO2, which could be attributed to the formed sulfate species that act as new acid sites on the surface of the catalyst. Combined with the in situ FT-IR results, it was concluded that the SCR reaction of the MIL-100(Fe-Mn) followed Eley–Rideal (E–R) mechanism.

Graphical Abstract

Schematic diagram of SCR reaction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shi XY, Liu FD, Xie LJ, Shan WP, He H (2013) Environ Sci Technol 47:3293

    Article  CAS  Google Scholar 

  2. Chen L, Li JH, Ge MF (2010) Environ Sci Technol 44:9590

    Article  CAS  Google Scholar 

  3. Jiang BQ, Deng BY, Zhang ZQ et al (2014) J Phy Chem C 118:14866

    Article  CAS  Google Scholar 

  4. Jin RB, Liu Y, Wang Y et al (2014) Appl Catal B 148:582

    Article  Google Scholar 

  5. Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ (2011) Appl Catal B 110:71

    Article  CAS  Google Scholar 

  6. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen SBT, Hupp JT (2009) Chem Soc Rev 38:1450

    Article  CAS  Google Scholar 

  7. Zhang M, Guan J, Zhang B, D Williams Su, Liang C (2012) Catal Lett 142:313

    Article  CAS  Google Scholar 

  8. Stock N, Biswas S (2012) Chem Rev 112:933

    Article  CAS  Google Scholar 

  9. Wang P, Zhao H, Sun H, Yu H, Quan X (2014) RSC Adv 4: 48912

    Article  CAS  Google Scholar 

  10. Petit C, Bandosz TJ (2011) Adv Funct Mater 21:2108

    Article  CAS  Google Scholar 

  11. Wuttke S, Bazin P, Vimont A, Serre C, Seo Y, Hwang YK, Chang J et al (2012) Chem Eur J 18:11959

    Article  CAS  Google Scholar 

  12. Han S, Huang Y G, Taku. W et al (2013) Micro Meso Mater 173:86

    Article  CAS  Google Scholar 

  13. Tan FC, Liu M, Li KY et al (2015) Chem Eng J 281:360

    Article  CAS  Google Scholar 

  14. Song X, Oh M, Lah MS (2013) Inorg Chem 52:10869

    Article  CAS  Google Scholar 

  15. Qu ZP, Miao L, Wang H, Fu Q (2015) Chem Commun 51:956

    Article  CAS  Google Scholar 

  16. Reinsch H, Stock N (2013) Cryst Eng Comm 15: 544

    Article  CAS  Google Scholar 

  17. Bukhtiyarova MV, Ivanova AS, Plyasova LM et al (2009) Appl Catal A 357:193

    Article  CAS  Google Scholar 

  18. Yang SJ, Wang CZ, Ma L et al (2013) Catal Sci Technol 3:161

    Article  CAS  Google Scholar 

  19. Yang SJ, Yan NQ, Guo YF et al (2011) Environ.Sci.Thchnol 45:540

    Article  Google Scholar 

  20. Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ (2011) Appl.CataB 110:71

    Article  CAS  Google Scholar 

  21. Wang CZ., Yang SJ, Chang HZ, Yue P, Li JH (2013) J Mol Catal A Chem 376:13

    Article  CAS  Google Scholar 

  22. Yamaguchi T, Jin T, Tanabe K J (1986) Phy Chem 90:3148

    Article  CAS  Google Scholar 

  23. Vu TA, Le GH, Dao CD et al (2014) RSC Adv 4:41185

    Article  CAS  Google Scholar 

  24. Yue P, Li KZ, Li JH (2013) Appl Catal B: Environ 140–141:483

    Google Scholar 

  25. Jiang BQ, Deng BY, Zhang ZQ, Wu ZL (2014) J Phys Chem C 118:14866

    Article  CAS  Google Scholar 

  26. Jiang BQ, Li ZG, Lee S (2013) Chem Eng J 225:52

    Article  CAS  Google Scholar 

  27. Qi GS, Yang RT, Chang R (2004) Appl Catal B 51:93

    Article  CAS  Google Scholar 

  28. Wu ZB, Jiang BQ, Liu Y, Wang HQ, Jin RB (2007) Environ Sci Technol 41:5812

    Article  CAS  Google Scholar 

  29. Liu ZM, Zhu JZ, Li JH, Ma L, woo S (2014) ACS Appl Mater Interfaces 6:14500

    Article  CAS  Google Scholar 

  30. Anstrom M, Topsoe NY, Dumesic JA (2003) J Catal 213:115

    Article  CAS  Google Scholar 

  31. Machidam, Uto M, Kurogid et al (2001) J. Mater Chem 11:900

    Article  Google Scholar 

  32. Yeom YH, Wen B, Sachtler WMH, Weitz E.(2004) J Phys Chem B 108:5386

    Article  CAS  Google Scholar 

  33. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1

    Article  CAS  Google Scholar 

  34. Horike S, Dinca M, Tamaki K et al (2008) J ACS 130: 5854

    CAS  Google Scholar 

  35. Karami A, Salehi V (2012) J Catal 292: 32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (No. 2011CB936002), National Natural Science Foundation of China (No. 51178076) and the Fundamental Research Funds for the Central Universities (No. DUT14LK17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Shi, Y., Li, C. et al. Synthesis of Bimetallic MOFs MIL-100(Fe-Mn) as an Efficient Catalyst for Selective Catalytic Reduction of NO x with NH3 . Catal Lett 146, 1956–1964 (2016). https://doi.org/10.1007/s10562-016-1840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1840-4

Keywords

Navigation