Two-Dimensional Materials as Catalysts for Energy Conversion

Abstract

Although large efforts have been dedicated to studying two-dimensional materials for catalysis, a rationalization of the associated trends in their intrinsic activity has so far been elusive. In the present work we employ density functional theory to examine a variety of two-dimensional materials, including, carbon based materials, hexagonal boron nitride (h-BN), transition metal dichalcogenides (e.g. MoS2, MoSe2) and layered oxides, to give an overview of the trends in adsorption energies. By examining key reaction intermediates relevant to the oxygen reduction, and oxygen evolution reactions we find that binding energies largely follow the linear scaling relationships observed for pure metals. This observation is very important as it suggests that the same simplifying assumptions made to correlate descriptors with reaction rates in transition metal catalysts are also valid for the studied two-dimensional materials. By means of these scaling relations, for each reaction we also identify several promising candidates that are predicted to exhibit a comparable activity to the state-of-the-art catalysts.

Graphical Abstract

Scaling relationship for the chemisorption energies of OH* and OOH* on various 2D materials.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    CAS  Article  Google Scholar 

  2. 2.

    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. doi:10.1126/science.1158877

    CAS  Article  Google Scholar 

  3. 3.

    Neto AHC, Novoselov K (2011) New directions in science and technology: two-dimensional crystals. Rep Prog Phys 74:082501. doi:10.1088/0034-4885/74/8/082501

    Article  Google Scholar 

  4. 4.

    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622. doi:10.1038/nphoton.2010.186

    CAS  Article  Google Scholar 

  5. 5.

    Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113. doi:10.1039/c0ee00683a

    CAS  Article  Google Scholar 

  6. 6.

    Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196:4873–4885. doi:10.1016/j.jpowsour.2011.02.022

    CAS  Article  Google Scholar 

  7. 7.

    Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674. doi:10.1039/C0EE00295J

    CAS  Article  Google Scholar 

  8. 8.

    Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126. doi:10.1016/j.pmatsci.2015.02.002

    CAS  Article  Google Scholar 

  9. 9.

    Koski KJ, Cui Y (2013) The new skinny in two-dimensional nanomaterials. ACS Nano 7:3739–3743. doi:10.1021/nn4022422

    CAS  Article  Google Scholar 

  10. 10.

    Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. doi:10.1038/nchem.1589

    Article  Google Scholar 

  11. 11.

    Das S, Robinson JA, Dubey M et al (2015) Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu Rev Mater Res 45:1–27. doi:10.1146/annurev-matsci-070214-021034

    CAS  Article  Google Scholar 

  12. 12.

    Kim SJ, Choi K, Lee B et al (2015) Materials for flexible, stretchable electronics: graphene and 2D materials. Annu Rev Mater Res 45:63–84. doi:10.1146/annurev-matsci-070214-020901

    CAS  Article  Google Scholar 

  13. 13.

    Lotsch BV (2015) Vertical 2D heterostructures. Annu Rev Mater Res 45:85–109. doi:10.1146/annurev-matsci-070214-020934

    CAS  Article  Google Scholar 

  14. 14.

    Butler SZ, Hollen SM, Cao L et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926. doi:10.1021/nn400280c

    CAS  Article  Google Scholar 

  15. 15.

    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. doi:10.1126/science.1157996

    CAS  Article  Google Scholar 

  16. 16.

    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi:10.1126/science.1102896

    CAS  Article  Google Scholar 

  17. 17.

    Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. doi:10.1021/nl0731872

    CAS  Article  Google Scholar 

  18. 18.

    Kong D, Wang H, Cha JJ et al (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347. doi:10.1021/nl400258t

    CAS  Article  Google Scholar 

  19. 19.

    Dai L (2013) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31–42. doi:10.1021/ar300122m

    CAS  Article  Google Scholar 

  20. 20.

    Wang H, Yuan X, Zeng G et al (2015) Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv Colloid Interface Sci 221:41–59. doi:10.1016/j.cis.2015.04.005

    CAS  Article  Google Scholar 

  21. 21.

    Liu J, Song P, Ning Z, Xu W (2015) Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction. Electrocatalysis 6:132–147. doi:10.1007/s12678-014-0243-9

    CAS  Article  Google Scholar 

  22. 22.

    Wong WY, Daud WRW, Mohamad AB et al (2013) Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications. Int J Hydrog Energy 38:9370–9386. doi:10.1016/j.ijhydene.2012.12.095

    CAS  Article  Google Scholar 

  23. 23.

    Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep Prog Phys 75:062501. doi:10.1088/0034-4885/75/6/062501

    Article  Google Scholar 

  24. 24.

    Uosaki K, Elumalai G, Noguchi H et al (2014) Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: theoretical suggestion and experimental proof. J Am Chem Soc 136:6542–6545. doi:10.1021/ja500393g

    CAS  Article  Google Scholar 

  25. 25.

    Koitz R, Nørskov JK, Studt F (2015) A systematic study of metal-supported boron nitride materials for the oxygen reduction reaction. Phys Chem Chem Phys 17:12722–12727. doi:10.1039/c5cp01384d

    CAS  Article  Google Scholar 

  26. 26.

    Feng L, Liu Y, Zhao J (2015) Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): a density functional theory (DFT) study. J Power Sources 287:431–438. doi:10.1016/j.jpowsour.2015.04.094

    CAS  Article  Google Scholar 

  27. 27.

    Ouyang W, Zeng D, Yu X et al (2014) Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction. Int J Hydrog Energy 39:15996–16005. doi:10.1016/j.ijhydene.2014.01.045

    CAS  Article  Google Scholar 

  28. 28.

    Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326. doi:10.1021/nn901850u

    CAS  Article  Google Scholar 

  29. 29.

    Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. doi:10.1126/science.1168049

    CAS  Article  Google Scholar 

  30. 30.

    Wang L, Yin F, Yao C (2014) N-doped graphene as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions in an alkaline electrolyte. Int J Hydrog Energy 39:15913–15919. doi:10.1016/j.ijhydene.2014.04.071

    CAS  Article  Google Scholar 

  31. 31.

    Li M, Zhang L, Xu Q et al (2014) N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: theoretical considerations. J Catal 314:66–72. doi:10.1016/j.jcat.2014.03.011

    CAS  Article  Google Scholar 

  32. 32.

    Zhang J, Zhao Z, Xia Z, Dai L (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452. doi:10.1038/nnano.2015.48

    CAS  Article  Google Scholar 

  33. 33.

    Liang W, Chen J, Liu Y, Chen S (2014) Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal 4:4170–4177. doi:10.1021/cs501170a

    CAS  Article  Google Scholar 

  34. 34.

    Studt F (2012) The oxygen reduction reaction on nitrogen-doped graphene. Catal Lett 143:58–60. doi:10.1007/s10562-012-0918-x

    Article  Google Scholar 

  35. 35.

    Fazio G, Ferrighi L, Di Valentin C (2014) Boron-doped graphene as active electrocatalyst for oxygen reduction reaction at a fuel-cell cathode. J Catal 318:203–210. doi:10.1016/j.jcat.2014.07.024

    CAS  Article  Google Scholar 

  36. 36.

    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2014) Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J Am Chem Soc 136:4394–4403. doi:10.1021/ja500432h

    CAS  Article  Google Scholar 

  37. 37.

    Hinnemann B, Moses PG, Bonde J et al (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309. doi:10.1021/ja0504690

    CAS  Article  Google Scholar 

  38. 38.

    Jaramillo TF, Jørgensen KP, Bonde J et al (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102. doi:10.1126/science.1141483

    CAS  Article  Google Scholar 

  39. 39.

    Chan K, Tsai C, Hansen HA, Nørskov JK (2014) Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6:1899–1905. doi:10.1002/cctc.201402128

    CAS  Article  Google Scholar 

  40. 40.

    Bollinger MV, Lauritsen JV, Jacobsen KW et al (2001) One-dimensional metallic edge states in MoS2. Phys Rev Lett 87:196803. doi:10.1103/PhysRevLett.87.196803

    CAS  Article  Google Scholar 

  41. 41.

    Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2015) Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping. Catal Sci Technol 5:246–253. doi:10.1039/C4CY01162G

    CAS  Article  Google Scholar 

  42. 42.

    Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2014) Understanding the reactivity of layered transition-metal sulfides: a single electronic descriptor for structure and adsorption. J Phys Chem Lett 5:3884–3889. doi:10.1021/jz5020532

    CAS  Article  Google Scholar 

  43. 43.

    Wang H, Tsai C, Kong D et al (2015) Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res 8:566–575. doi:10.1007/s12274-014-0677-7

    CAS  Article  Google Scholar 

  44. 44.

    Friebel D, Louie MW, Bajdich M et al (2015) Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J Am Chem Soc 137:1305–1313. doi:10.1021/ja511559d

    CAS  Article  Google Scholar 

  45. 45.

    Burke MS, Kast MG, Trotochaud L et al (2015) Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137:3638–3648. doi:10.1021/jacs.5b00281

    CAS  Article  Google Scholar 

  46. 46.

    Zhang B, Zheng X, Voznyy O et al (2016) Homogeneously dispersed, multimetal oxygen-evolving catalysts. Science. doi:10.1126/science.aaf1525

    Google Scholar 

  47. 47.

    McCrory CCL, Jung S, Ferrer IM et al (2015) Benchmarking HER and OER electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357. doi:10.1021/ja510442p

    CAS  Article  Google Scholar 

  48. 48.

    McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. doi:10.1021/ja407115p

    CAS  Article  Google Scholar 

  49. 49.

    Nørskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892. doi:10.1021/jp047349j

    Article  Google Scholar 

  50. 50.

    Rossmeisl J, Qu Z-W, Zhu H et al (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89. doi:10.1016/j.jelechem.2006.11.008

    CAS  Article  Google Scholar 

  51. 51.

    Abild-Pedersen F, Greeley J, Studt F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105. doi:10.1103/PhysRevLett.99.016105

    CAS  Article  Google Scholar 

  52. 52.

    Fernández EM, Moses PG, Toftelund A et al (2008) Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed Engl 47:4683–4686. doi:10.1002/anie.200705739

    Article  Google Scholar 

  53. 53.

    Greeley J, Stephens IEL, Bondarenko AS et al (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556. doi:10.1038/nchem.367

    CAS  Article  Google Scholar 

  54. 54.

    Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK (2012) Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2:1654–1660. doi:10.1021/cs300227s

    CAS  Article  Google Scholar 

  55. 55.

    Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. doi:10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  56. 56.

    Atomic Simulation Environment (ASE) Center for Atomic Scale Material Design (CAMD), Technical University of Denmark, Lyngby. https://wiki.fysik.dtu.dk/ase

  57. 57.

    Wellendorff J, Lundgaard KT, Møgelhøj A et al (2012) Density functionals for surface science: exchange–correlation model development with Bayesian error estimation. Phys Rev B 85:235149. doi:10.1103/PhysRevB.85.235149

    Article  Google Scholar 

  58. 58.

    Kresse G (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. doi:10.1103/PhysRevB.54.11169

    CAS  Article  Google Scholar 

  59. 59.

    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. doi:10.1016/0927-0256(96)00008-0

    CAS  Article  Google Scholar 

  60. 60.

    Dudarev SL, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509. doi:10.1103/PhysRevB.57.1505

    CAS  Article  Google Scholar 

  61. 61.

    Ng JWD, García-Melchor M, Bajdich M et al (2016) Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy 1:16053. doi:10.1038/nenergy.2016.53

    Article  Google Scholar 

  62. 62.

    Siahrostami S, Vojvodic A (2015) Influence of adsorbed water on the oxygen evolution reaction on oxides. J Phys Chem C 119:1032–1037. doi:10.1021/jp508932x

    CAS  Article  Google Scholar 

  63. 63.

    Koper MTM (2013) Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci 4:2710. doi:10.1039/c3sc50205h

    CAS  Article  Google Scholar 

  64. 64.

    Man IC, Su H-Y, Calle-Vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165. doi:10.1002/cctc.201000397

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences, to the SUNCAT Center for Interface Science and Catalysis. S.S and M.K acknowledge support from the Global Climate Energy Project (GCEP) at Stanford University (Fund No. 52454).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felix Studt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8447 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siahrostami, S., Tsai, C., Karamad, M. et al. Two-Dimensional Materials as Catalysts for Energy Conversion. Catal Lett 146, 1917–1921 (2016). https://doi.org/10.1007/s10562-016-1837-z

Download citation

Keywords

  • MoS2
  • Adsorption Energy
  • Oxygen Reduction Reaction
  • Oxygen Evolution Reaction
  • Transition Metal Dichalcogenides