Advertisement

Catalysis Letters

, Volume 146, Issue 10, pp 1917–1921 | Cite as

Two-Dimensional Materials as Catalysts for Energy Conversion

  • Samira Siahrostami
  • Charlie Tsai
  • Mohammadreza Karamad
  • Ralph Koitz
  • Max García-Melchor
  • Michal Bajdich
  • Aleksandra Vojvodic
  • Frank Abild-Pedersen
  • Jens K. Nørskov
  • Felix StudtEmail author
Article

Abstract

Although large efforts have been dedicated to studying two-dimensional materials for catalysis, a rationalization of the associated trends in their intrinsic activity has so far been elusive. In the present work we employ density functional theory to examine a variety of two-dimensional materials, including, carbon based materials, hexagonal boron nitride (h-BN), transition metal dichalcogenides (e.g. MoS2, MoSe2) and layered oxides, to give an overview of the trends in adsorption energies. By examining key reaction intermediates relevant to the oxygen reduction, and oxygen evolution reactions we find that binding energies largely follow the linear scaling relationships observed for pure metals. This observation is very important as it suggests that the same simplifying assumptions made to correlate descriptors with reaction rates in transition metal catalysts are also valid for the studied two-dimensional materials. By means of these scaling relations, for each reaction we also identify several promising candidates that are predicted to exhibit a comparable activity to the state-of-the-art catalysts.

Graphical Abstract

Scaling relationship for the chemisorption energies of OH* and OOH* on various 2D materials.

Keywords

MoS2 Adsorption Energy Oxygen Reduction Reaction Oxygen Evolution Reaction Transition Metal Dichalcogenides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge support from the U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences, to the SUNCAT Center for Interface Science and Catalysis. S.S and M.K acknowledge support from the Global Climate Energy Project (GCEP) at Stanford University (Fund No. 52454).

Supplementary material

10562_2016_1837_MOESM1_ESM.pdf (8.2 mb)
Supplementary material 1 (PDF 8447 KB)

References

  1. 1.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi: 10.1038/nmat1849 CrossRefGoogle Scholar
  2. 2.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. doi: 10.1126/science.1158877 CrossRefGoogle Scholar
  3. 3.
    Neto AHC, Novoselov K (2011) New directions in science and technology: two-dimensional crystals. Rep Prog Phys 74:082501. doi: 10.1088/0034-4885/74/8/082501 CrossRefGoogle Scholar
  4. 4.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622. doi: 10.1038/nphoton.2010.186 CrossRefGoogle Scholar
  5. 5.
    Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113. doi: 10.1039/c0ee00683a CrossRefGoogle Scholar
  6. 6.
    Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196:4873–4885. doi: 10.1016/j.jpowsour.2011.02.022 CrossRefGoogle Scholar
  7. 7.
    Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674. doi: 10.1039/C0EE00295J CrossRefGoogle Scholar
  8. 8.
    Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126. doi: 10.1016/j.pmatsci.2015.02.002 CrossRefGoogle Scholar
  9. 9.
    Koski KJ, Cui Y (2013) The new skinny in two-dimensional nanomaterials. ACS Nano 7:3739–3743. doi: 10.1021/nn4022422 CrossRefGoogle Scholar
  10. 10.
    Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. doi: 10.1038/nchem.1589 CrossRefGoogle Scholar
  11. 11.
    Das S, Robinson JA, Dubey M et al (2015) Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu Rev Mater Res 45:1–27. doi: 10.1146/annurev-matsci-070214-021034 CrossRefGoogle Scholar
  12. 12.
    Kim SJ, Choi K, Lee B et al (2015) Materials for flexible, stretchable electronics: graphene and 2D materials. Annu Rev Mater Res 45:63–84. doi: 10.1146/annurev-matsci-070214-020901 CrossRefGoogle Scholar
  13. 13.
    Lotsch BV (2015) Vertical 2D heterostructures. Annu Rev Mater Res 45:85–109. doi: 10.1146/annurev-matsci-070214-020934 CrossRefGoogle Scholar
  14. 14.
    Butler SZ, Hollen SM, Cao L et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926. doi: 10.1021/nn400280c CrossRefGoogle Scholar
  15. 15.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. doi: 10.1126/science.1157996 CrossRefGoogle Scholar
  16. 16.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  17. 17.
    Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. doi: 10.1021/nl0731872 CrossRefGoogle Scholar
  18. 18.
    Kong D, Wang H, Cha JJ et al (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347. doi: 10.1021/nl400258t CrossRefGoogle Scholar
  19. 19.
    Dai L (2013) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31–42. doi: 10.1021/ar300122m CrossRefGoogle Scholar
  20. 20.
    Wang H, Yuan X, Zeng G et al (2015) Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv Colloid Interface Sci 221:41–59. doi: 10.1016/j.cis.2015.04.005 CrossRefGoogle Scholar
  21. 21.
    Liu J, Song P, Ning Z, Xu W (2015) Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction. Electrocatalysis 6:132–147. doi: 10.1007/s12678-014-0243-9 CrossRefGoogle Scholar
  22. 22.
    Wong WY, Daud WRW, Mohamad AB et al (2013) Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications. Int J Hydrog Energy 38:9370–9386. doi: 10.1016/j.ijhydene.2012.12.095 CrossRefGoogle Scholar
  23. 23.
    Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep Prog Phys 75:062501. doi: 10.1088/0034-4885/75/6/062501 CrossRefGoogle Scholar
  24. 24.
    Uosaki K, Elumalai G, Noguchi H et al (2014) Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: theoretical suggestion and experimental proof. J Am Chem Soc 136:6542–6545. doi: 10.1021/ja500393g CrossRefGoogle Scholar
  25. 25.
    Koitz R, Nørskov JK, Studt F (2015) A systematic study of metal-supported boron nitride materials for the oxygen reduction reaction. Phys Chem Chem Phys 17:12722–12727. doi: 10.1039/c5cp01384d CrossRefGoogle Scholar
  26. 26.
    Feng L, Liu Y, Zhao J (2015) Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): a density functional theory (DFT) study. J Power Sources 287:431–438. doi: 10.1016/j.jpowsour.2015.04.094 CrossRefGoogle Scholar
  27. 27.
    Ouyang W, Zeng D, Yu X et al (2014) Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction. Int J Hydrog Energy 39:15996–16005. doi: 10.1016/j.ijhydene.2014.01.045 CrossRefGoogle Scholar
  28. 28.
    Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326. doi: 10.1021/nn901850u CrossRefGoogle Scholar
  29. 29.
    Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. doi: 10.1126/science.1168049 CrossRefGoogle Scholar
  30. 30.
    Wang L, Yin F, Yao C (2014) N-doped graphene as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions in an alkaline electrolyte. Int J Hydrog Energy 39:15913–15919. doi: 10.1016/j.ijhydene.2014.04.071 CrossRefGoogle Scholar
  31. 31.
    Li M, Zhang L, Xu Q et al (2014) N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: theoretical considerations. J Catal 314:66–72. doi: 10.1016/j.jcat.2014.03.011 CrossRefGoogle Scholar
  32. 32.
    Zhang J, Zhao Z, Xia Z, Dai L (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452. doi: 10.1038/nnano.2015.48 CrossRefGoogle Scholar
  33. 33.
    Liang W, Chen J, Liu Y, Chen S (2014) Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal 4:4170–4177. doi: 10.1021/cs501170a CrossRefGoogle Scholar
  34. 34.
    Studt F (2012) The oxygen reduction reaction on nitrogen-doped graphene. Catal Lett 143:58–60. doi: 10.1007/s10562-012-0918-x CrossRefGoogle Scholar
  35. 35.
    Fazio G, Ferrighi L, Di Valentin C (2014) Boron-doped graphene as active electrocatalyst for oxygen reduction reaction at a fuel-cell cathode. J Catal 318:203–210. doi: 10.1016/j.jcat.2014.07.024 CrossRefGoogle Scholar
  36. 36.
    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2014) Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J Am Chem Soc 136:4394–4403. doi: 10.1021/ja500432h CrossRefGoogle Scholar
  37. 37.
    Hinnemann B, Moses PG, Bonde J et al (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309. doi: 10.1021/ja0504690 CrossRefGoogle Scholar
  38. 38.
    Jaramillo TF, Jørgensen KP, Bonde J et al (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102. doi: 10.1126/science.1141483 CrossRefGoogle Scholar
  39. 39.
    Chan K, Tsai C, Hansen HA, Nørskov JK (2014) Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6:1899–1905. doi: 10.1002/cctc.201402128 CrossRefGoogle Scholar
  40. 40.
    Bollinger MV, Lauritsen JV, Jacobsen KW et al (2001) One-dimensional metallic edge states in MoS2. Phys Rev Lett 87:196803. doi: 10.1103/PhysRevLett.87.196803 CrossRefGoogle Scholar
  41. 41.
    Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2015) Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping. Catal Sci Technol 5:246–253. doi: 10.1039/C4CY01162G CrossRefGoogle Scholar
  42. 42.
    Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2014) Understanding the reactivity of layered transition-metal sulfides: a single electronic descriptor for structure and adsorption. J Phys Chem Lett 5:3884–3889. doi: 10.1021/jz5020532 CrossRefGoogle Scholar
  43. 43.
    Wang H, Tsai C, Kong D et al (2015) Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res 8:566–575. doi: 10.1007/s12274-014-0677-7 CrossRefGoogle Scholar
  44. 44.
    Friebel D, Louie MW, Bajdich M et al (2015) Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J Am Chem Soc 137:1305–1313. doi: 10.1021/ja511559d CrossRefGoogle Scholar
  45. 45.
    Burke MS, Kast MG, Trotochaud L et al (2015) Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137:3638–3648. doi: 10.1021/jacs.5b00281 CrossRefGoogle Scholar
  46. 46.
    Zhang B, Zheng X, Voznyy O et al (2016) Homogeneously dispersed, multimetal oxygen-evolving catalysts. Science. doi: 10.1126/science.aaf1525 Google Scholar
  47. 47.
    McCrory CCL, Jung S, Ferrer IM et al (2015) Benchmarking HER and OER electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357. doi: 10.1021/ja510442p CrossRefGoogle Scholar
  48. 48.
    McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. doi: 10.1021/ja407115p CrossRefGoogle Scholar
  49. 49.
    Nørskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892. doi: 10.1021/jp047349j CrossRefGoogle Scholar
  50. 50.
    Rossmeisl J, Qu Z-W, Zhu H et al (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89. doi: 10.1016/j.jelechem.2006.11.008 CrossRefGoogle Scholar
  51. 51.
    Abild-Pedersen F, Greeley J, Studt F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105. doi: 10.1103/PhysRevLett.99.016105 CrossRefGoogle Scholar
  52. 52.
    Fernández EM, Moses PG, Toftelund A et al (2008) Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed Engl 47:4683–4686. doi: 10.1002/anie.200705739 CrossRefGoogle Scholar
  53. 53.
    Greeley J, Stephens IEL, Bondarenko AS et al (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556. doi: 10.1038/nchem.367 CrossRefGoogle Scholar
  54. 54.
    Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK (2012) Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2:1654–1660. doi: 10.1021/cs300227s CrossRefGoogle Scholar
  55. 55.
    Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. doi: 10.1088/0953-8984/21/39/395502 CrossRefGoogle Scholar
  56. 56.
    Atomic Simulation Environment (ASE) Center for Atomic Scale Material Design (CAMD), Technical University of Denmark, Lyngby. https://wiki.fysik.dtu.dk/ase
  57. 57.
    Wellendorff J, Lundgaard KT, Møgelhøj A et al (2012) Density functionals for surface science: exchange–correlation model development with Bayesian error estimation. Phys Rev B 85:235149. doi: 10.1103/PhysRevB.85.235149 CrossRefGoogle Scholar
  58. 58.
    Kresse G (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. doi: 10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  59. 59.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. doi: 10.1016/0927-0256(96)00008-0 CrossRefGoogle Scholar
  60. 60.
    Dudarev SL, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509. doi: 10.1103/PhysRevB.57.1505 CrossRefGoogle Scholar
  61. 61.
    Ng JWD, García-Melchor M, Bajdich M et al (2016) Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy 1:16053. doi: 10.1038/nenergy.2016.53 CrossRefGoogle Scholar
  62. 62.
    Siahrostami S, Vojvodic A (2015) Influence of adsorbed water on the oxygen evolution reaction on oxides. J Phys Chem C 119:1032–1037. doi: 10.1021/jp508932x CrossRefGoogle Scholar
  63. 63.
    Koper MTM (2013) Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci 4:2710. doi: 10.1039/c3sc50205h CrossRefGoogle Scholar
  64. 64.
    Man IC, Su H-Y, Calle-Vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165. doi: 10.1002/cctc.201000397 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Samira Siahrostami
    • 1
  • Charlie Tsai
    • 1
    • 2
  • Mohammadreza Karamad
    • 1
  • Ralph Koitz
    • 2
    • 3
  • Max García-Melchor
    • 1
    • 2
  • Michal Bajdich
    • 2
  • Aleksandra Vojvodic
    • 2
  • Frank Abild-Pedersen
    • 2
  • Jens K. Nørskov
    • 1
    • 2
  • Felix Studt
    • 2
    • 4
    • 5
    Email author
  1. 1.SUNCAT Center for Interface Science and Catalysis, Department of Chemical EngineeringStanford UniversityStanfordUSA
  2. 2.SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.Department of ChemistryUniversity of ZurichZurichSwitzerland
  4. 4.Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  5. 5.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations