Skip to main content
Log in

Pt and Ni Nanoparticles Anchored into Metal–Organic Frameworks MIL-101 (Cr) as Swift Catalysts for Ethanol Dehydration

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, Pt and Ni nanoparticles were anchored into the metal–organic-framework MIL-101 (Cr), by using rotary chemical evaporation method in the in-situ reduction step. Neat MIL-101 (Cr) as well as Pt/MIL-101 and Ni/MIL-101 were characterized through XRD, FT-IR, DSC/TGA, N2 physisorption and TEM techniques. The catalytic performances of various catalyst samples were assessed in ethanol conversion using the micro catalytic pulse-flow technique at different operating conditions. The MIL-101, as a member of Cr-MOFs, was revealed as cubo-octahedral crystalline particles of uniform sizes (~212 nm). It exhibited high surface area (2100 m2 g−1) of narrower pore radii (<2 nm) and distinguished thermal stability at temperatures ≤400 °C. In catalytic conversion of ethanol, the neat Mil-101 displayed some activity toward dehydration reaction, yielding 26 % ethylene at 300 °C. The 5 Ni/Mil-101 catalyst sample acquired distinctive high activity and selectivity toward ethylene, with a 60 % yield. However, the 0.9 Pt/Mil-101 sample produced 46 % ethylene, showing only 11 % acetaldehyde at the same reaction conditions. The results obtained in the present study are considered as novel and promising ones for ethanol dehydration.

Graphical Abstract

Pt and Ni nanoparticles were anchored on metal–organic-framework MIL-101 (Cr) via rotary chemical evaporation (RCE) method in the in-situ reduction step. MIL-101 (Cr), Pt/MIL-101 and Ni/MIL-101 were characterized through XRD, FT-IR, DSC/TGA, N2 physisorption and TEM. It displayed cubo-octahedral crystalline particles of uniform sizes (~212 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jeong M-G, Kim DH, Lee S-K, Lee JH, Han SW, Park EJ, Cychosz KA, Thommes M, Hwang YK, Chang J-S, Kim YD (2016) Microporous Mesoporous Mater 221:101

    Article  CAS  Google Scholar 

  2. Naseri M, Mousavi SF, Mohammadi T, Bakhtiari O (2015) J Ind Eng Chem 29:249

    Article  CAS  Google Scholar 

  3. Long JR, Yaghi OM (2009) Chem Soc Rev 38(5):1213

    Article  CAS  Google Scholar 

  4. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) Science 309(5743):2040

    Article  Google Scholar 

  5. Uemura T, Yanai N, Kitagawa S (2005) Chem Soc Rev 38(5):1228

    Article  Google Scholar 

  6. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38(5):1450

    Article  CAS  Google Scholar 

  7. Li J-R, Kuppler RJ, Zhou H-C (2009) Chem Soc Rev 38(5):1477

    Article  CAS  Google Scholar 

  8. Achmann S, Hagen G, Kita J, Malkowsky IM, Kiener C, Moos R (2009) Sensors 9(3):1574

    Article  CAS  Google Scholar 

  9. Gole B, Bar AK, Mukherjee PS (2011) Chem Commun;47(44):12137

    Article  CAS  Google Scholar 

  10. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang J-S, Hwang YK, Marsaud V, Bories P-N, Cynober L, Gil S, Ferey G, Couvreur P, Gref R (2010) Nat Mater 9(2):172

    Article  CAS  Google Scholar 

  11. Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Férey G (2008) Angew Chem Int Ed 47(22):4144

    Article  CAS  Google Scholar 

  12. Hong DY, Hwang YK, Serre C, Férey G, Chang JS (2009) Adv Funct Mater 19(10):1537

    Article  CAS  Google Scholar 

  13. Hwang YK, Hong D-Y, Chang J-S, Seo H, Yoon M, Kim J, Jhung SH, Serre C, Ferey G, Appl Catal A Gen 358(2):249

  14. Wang Z, Cohen SM (2009) Chem Soc Rev 38(5):1315

    Article  CAS  Google Scholar 

  15. Meilikhov M, Yusenko K, Esken D, Turner S, Van Tendeloo G, Fischer RA (2010) Eur J Inorg Chem 24:3701

    Article  Google Scholar 

  16. Hermes S, Schröter M, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW, Fischer RA (2005) Angew Chem Int Ed 4(38):6237

    Article  Google Scholar 

  17. El-Shall MS, Abdelsayed V, Abd El Rahman SK, Hassan HMA, El-Kaderi HM, Reich TE (2009) J Mater Chem 19(41):7625

    Article  CAS  Google Scholar 

  18. Park YK, Choi SB, Nam HJ, Jung D-Y, Ahn HC, Choi K, Furukawa H, Kim J (2010) Chem Commun 46(18):3086

    Article  CAS  Google Scholar 

  19. Hermannsdörfer J, Kempe R (2011) Chem Eur J 17(29):8071

    Article  Google Scholar 

  20. Li P-Z, Aranishi K, Xu Q (2012) Chem Commun 8(26):3173

    Article  Google Scholar 

  21. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423(6941):705

    Article  CAS  Google Scholar 

  22. Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43(18):2334

    Article  CAS  Google Scholar 

  23. Stock N, Biswas S (2011) Chem Rev 112(2):933

    Article  Google Scholar 

  24. Plaza MG, Ribeiro AM, Ferreira A, Santos JC, Hwang YK, Seo YK et al (2012) Microporous Mesoporous Mater 153:178

    Article  CAS  Google Scholar 

  25. Song Y, Cronin L (2008) Angew Chem Int Ed 47(25):4635

    Article  CAS  Google Scholar 

  26. Hasan Z, Jeon J, Jhung SH (2012) J Hazard Mater 209:151

    Article  Google Scholar 

  27. Lewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, De Weireld G, Chang JS, Hong DY, Kyu Hwang Y, Hwa Jhung S, Férey G (2008) Langmuir 24(14):7245

    Article  Google Scholar 

  28. Férey G (2008) Chem Soc Rev 37(1):191

    Article  Google Scholar 

  29. Taylor-Pashow KML, Rocca JD, Xie Z, Tran S, Lin W (2009) J Am Chem Soc 131(40):14261

    Article  CAS  Google Scholar 

  30. Fazaeli R, Aliyan H, Moghadam M, Masoudinia M. (2013) J Mol Catal A Chem 374:46–52

    Article  Google Scholar 

  31. Pan H, Li X, Zhang D, Guan Y, Wu P (2013) J Mol Catal A Chem 377:108

    Article  CAS  Google Scholar 

  32. Jin Y, Shi J, Zhang F, Zhong Y, Zhu W (2014) J Mol Catal A Chem 383:167

    Article  Google Scholar 

  33. Buragohain A, Van Der Voort P, Biswas S (2015) Microporous Mesoporous Mater 215:91

    Article  CAS  Google Scholar 

  34. Pan H, Li X, Yu Y, Li J, Hu J, Guan Y et al (2015) J Mol Catal A Chem 399:1

    Article  CAS  Google Scholar 

  35. Chen H, Chen S, Yuan X, Zhang Y (2013) Mater Lett 100:230

    Article  CAS  Google Scholar 

  36. Zadehahmadi F, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Khosropour AR et al (2014) J Solid State Chem 218:56

    Article  CAS  Google Scholar 

  37. Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S et al (2009) Microporous Mesoporous Mater 120(3):325

    Article  Google Scholar 

  38. Haque E, Khan NA, Lee JE, Jhung SH (2009) Chem Eur J 15(43):11730

    Article  CAS  Google Scholar 

  39. Hassan SA, Gobara HM, Gomaa MM, Mohamed RS, Khalil FH (2015) RSC Adv 5(67):54460

    Article  CAS  Google Scholar 

  40. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J et al (1985) Pure Appl Chem 57(4):603

    Article  CAS  Google Scholar 

  41. Gobara HM, Hassan SA (2009) Pet Sci Technol 27(14):1555

    Article  CAS  Google Scholar 

  42. Ghattas MS, Gobara HM, Henin SA, Hassan SA, Khalil FH (2007) Pet Sci Technol 25 (10):1279

    Article  CAS  Google Scholar 

  43. Zhang L, Zhou L, Yang K, Gao D, Huang C, Chen Y, Zhang F, Xiong X, Li L, Xia Q (2016) J Alloys Compd 677:87

    Article  CAS  Google Scholar 

  44. Khan, NA, Kang IJ, Seok HY, Jhung SH (2011) Chem Eng J 166:1152

    Article  CAS  Google Scholar 

  45. El Naggar AMA, Gobara HM, El Sayed HA, Soliman FS (2015) Energy Convers Manag 106:615

    Article  CAS  Google Scholar 

  46. Gobara HM, Hassan SA, Betiha MA (2016) Mater Chem Phys 181:476

    Article  CAS  Google Scholar 

  47. Zaki T (2005) J Colloid Interface Sci 284:606

    Article  CAS  Google Scholar 

  48. Phung TKh, Hernández LP, Lagazzo A, Busca G (2015) Appl Catal A 493:77

    Article  CAS  Google Scholar 

  49. Arenamnarta S, Trakarnpruk W (2006) Int J Appl Sci Eng 4(1):21

  50. Chen G, Sh L, Jiao F, Yuan Q (2007) Catal Today 125:111

    Article  CAS  Google Scholar 

  51. Gobara HM, Mohamed RS, Khalil FH, El-Shall MS, Hassan SA (2014) Egypt J Petrol 23:105

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba M. Gobara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobara, H.M., Mohamed, R.S., Hassan, S.A. et al. Pt and Ni Nanoparticles Anchored into Metal–Organic Frameworks MIL-101 (Cr) as Swift Catalysts for Ethanol Dehydration. Catal Lett 146, 1875–1885 (2016). https://doi.org/10.1007/s10562-016-1826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1826-2

Keywords

Navigation