Skip to main content

Electronic Structure of Catalysis Intermediates by the G0W0 Approximation

Abstract

The ability of a material to perform surface catalysis depends on the electronic structure features at the surface. Recent experiments on Fe2O3, one of the most studied water oxidation catalysts show that surface states may originate from adsorbed reaction intermediates that are cardinal for catalysis. Our recent theoretical DFT+U calculations confirm this hypothesis. In this paper, in order to account for more accurate electronic structure of the surface, we perform a one-shot GW calculation from a DFT+U wavefunction. We find that G0W0 overestimates the energy position of surface states, but provides good qualitative features of the surface’s electronic structure.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Li Y, Chan SH, Sun Q (2015) Nanoscale 7:8663

    CAS  Article  Google Scholar 

  2. Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK (2015) J Catal 328:36

    CAS  Article  Google Scholar 

  3. Mao Y, Chen J, Wang H, Hu P (2015) Chin J Catal 36:1596

  4. Zaffran J, Toroker MC (2016) Chem Phys Chem 17:1630

  5. Zaffran J, Toroker MC (2016) Chem Sel 1:911

    CAS  Google Scholar 

  6. Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Chem Cat Chem 3:1159

    CAS  Google Scholar 

  7. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) J Electroanal Chem 607:83

  8. Negreiros FR, Pedroza LS, Dalpian GM (2016) J Phys Chem C 120:11918

  9. von Rudorff GF, Jakobsen R, Rosso KM, Blumberger J (2016) J Phys Chem Lett 7:1155

    Article  Google Scholar 

  10. Tamirat AG, Rick J, Dubale AA, Su W-N, Hwang B-J (2016) Nanoscale Horiz 1:243

  11. Young KMH, Klahr BM, Zandi O, Hamann TW (2013) Catal Sci Technol 3:1660

    CAS  Article  Google Scholar 

  12. Klahr B, Hamann T (2014) J Phys Chem C 118:10393

    CAS  Article  Google Scholar 

  13. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Energy Environ Sci 5:7626

    CAS  Article  Google Scholar 

  14. Cummings CY, Marken F, Peter LM, Upul Wijayantha KG, Tahir AA (2011) J Am Chem Soc 134:1228

  15. Peter L (2013) J Solid State Electrochem 17:315

    CAS  Article  Google Scholar 

  16. Barroso M, Mesa CA, Pendlebury SR, Cowan AJ, Hisatomi T, Sivula K, Grätzel M, Klug DR, Durrant JR (2012) Proc Natl Acad Sci USA 109:15640

    CAS  Article  Google Scholar 

  17. Le Formal F, Pendlebury SR, Cornuz M, Tilley SD, Grätzel M, Durrant JR (2014) J Am Chem Soc 136:2564

    CAS  Article  Google Scholar 

  18. Barroso M, Pendlebury SR, Cowan AJ, Durrant JR (2013) Chem Sci 4:2724

    CAS  Article  Google Scholar 

  19. Le Formal F, Sivula K, Grätzel M (2012) J Phys Chem C 116:26707

    CAS  Article  Google Scholar 

  20. Neufeld O, Yatom N, Caspary Toroker M (2015) ACS Catal 5:7237

    CAS  Article  Google Scholar 

  21. Neufeld O, Toroker MC (2015) PCCP 17:24129

  22. Trainor TP, Chaka AM, Eng PJ, Newville M, Waychunas GA, Catalano JG, Brown GE Jr (2004) Surf Sci 573:204

    CAS  Article  Google Scholar 

  23. Hellman A, Pala RGS (2011) J Phys Chem C 115:12901

    CAS  Article  Google Scholar 

  24. Liao P, Keith JA, Carter EA (2012) J Am Chem Soc 134:13296

    CAS  Article  Google Scholar 

  25. Nguyen M-T, Piccinin S, Seriani N, Gebauer R (2015) ACS Catal 5:715

    CAS  Article  Google Scholar 

  26. Nguyen M-T, Seriani N, Piccinin S, Gebauer R (2014) J Chem Phys 140:64703

  27. Yatom N, Neufeld O, Caspary Toroker M (2015) J Phys Chem C 119:24789

    CAS  Article  Google Scholar 

  28. Iandolo B, Hellman A (2014) Angew Chem 126:13622

  29. Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012) J Am Chem Soc 134:4294

    CAS  Article  Google Scholar 

  30. Pendlebury SR, Barroso M, Cowan AJ, Sivula K, Tang J, Grätzel M, Klug D, Durrant JR (2011) Chem Commun 47:716

    CAS  Article  Google Scholar 

  31. Cummings CY, Marken F, Peter LM, Tahir AA, Wijayantha KU (2012) Chem Commun 48:2027

  32. Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC (2011) Energy Environ Sci 4:958

    CAS  Article  Google Scholar 

  33. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    CAS  Article  Google Scholar 

  34. Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) Phys Rev B 70:235121

    Article  Google Scholar 

  35. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) J Phys 9:767

    CAS  Google Scholar 

  36. Rollmann G, Rohrbach A, Entel P, Hafner J (2004) Phys Rev B 69:165107

    Article  Google Scholar 

  37. Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107

    Article  Google Scholar 

  38. Toroker MC (2014) J Phys Chem C 118:23162

    CAS  Article  Google Scholar 

  39. Neufeld O, Toroker MC (2015) J Phys Chem C 119:5836

    CAS  Article  Google Scholar 

  40. Yatom N, Toroker M (2015) Molecules 20:19668

  41. Yatom N, Toroker MC (2016) PCCP 18:16098

  42. Neufeld O, Toroker MC (2016) J Chem Theory Comput 12:1572

    CAS  Article  Google Scholar 

  43. Liao P, Carter EA (2011) PCCP 13:15189

  44. Aryasetiawan F, Gunnarsson O (1998) Rep Prog Phys 61:237

    CAS  Article  Google Scholar 

  45. Körzdörfer T, Marom N (2012) Phys Rev B 86:041110

    Article  Google Scholar 

  46. Kresse G, Hafner J (1993) Phys Rev B 47:558

    CAS  Article  Google Scholar 

  47. Kresse G, Furthmüller J (1996) Comp Mater Sci 6:15

    CAS  Article  Google Scholar 

  48. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    CAS  Article  Google Scholar 

  49. Mosey NJ, Liao P, Carter EA (2008) J Chem Phys 129:014103

    Article  Google Scholar 

  50. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    CAS  Article  Google Scholar 

  51. Blöchl PE (1994) Phys Rev B 50:17953

  52. Lehmann G, Taut M (1972) Physica Status solidi (b) 54:469

    CAS  Article  Google Scholar 

  53. Nocedal J, Wright SJ (2006) Conjugate gradient methods. In: Numerical optimization. Springer, New York

  54. Rohrbach A, Hafner J, Kresse G (2004) Phys Rev B 70:125426

    Article  Google Scholar 

  55. Chambers SA, Yi SI (1999) Surf Sci 439:L785

  56. Thevuthasan S, Kim YJ, Yi SI, Chambers SA, Morais J, Denecke R, Fadley CS, Liu P, Kendelewicz T, Brown GE Jr (1999) Surf Sci 425:276

    CAS  Article  Google Scholar 

  57. Wang XG, Weiss W, Shaikhutdinov SK, Ritter M, Petersen M, Wagner F, Schlögl R, Scheffler M (1998) Phys Rev Lett 81:1038

    Article  Google Scholar 

  58. Shaikhutdinov SK, Weiss W (1999) Surf Sci 432:L627

  59. Greene ME, Chiaramonti AN, Christensen ST, Cao LX, Bedzyk MJ, Hersam MC (2005) Adv Mater 17:1765

    CAS  Article  Google Scholar 

  60. Lemire C, Bertarione S, Zecchina A, Scarano D, Chaka A, Shaikhutdinov S, Freund HJ (2005) Phys Rev Lett 94:166101

    CAS  Article  Google Scholar 

  61. Lad RJ, Henrich VE (1988) Surf Sci 193:81

    CAS  Article  Google Scholar 

  62. Valdés Á, Qu ZW, Kroes GJ, Rossmeisl J, Nørskov JK (2008) J Phys Chem C 112:9872

  63. Chen J, Selloni A (2012) J Phys Chem Lett 3:2808

    CAS  Article  Google Scholar 

  64. Momma K, Izumi F (2008) J Appl Crystallogr 41:653

  65. Merchant P, Collins R, Kershaw R, Dwight K, Wold A (1979) J Solid State Chem 27:307

    CAS  Article  Google Scholar 

  66. Zimmermann R, Steiner P, Claessen R, Reinert F, Hüfner S, Blaha P, Dufek P (1999) J Phys 11:1657

    CAS  Google Scholar 

  67. Huang P, Carter EA (2008) Ann Rev Phys Chem 59:261

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science Foundation (Grant No. 152/11). N. Y. acknowledges excellence scholarships by the Department of Materials Science and Engineering at the Technion and by the Russell Barrie Nanotechnology Institute (RBNI) at the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maytal Caspary Toroker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yatom, N., Toroker, M.C. Electronic Structure of Catalysis Intermediates by the G0W0 Approximation. Catal Lett 146, 2009–2014 (2016). https://doi.org/10.1007/s10562-016-1825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1825-3

Keywords

  • Water splitting
  • Density Functional Theory
  • DFT+U
  • Iron oxides
  • GW approximation