Skip to main content

Advertisement

Log in

Hydrogenation of Levulinic Acid into γ-Valerolactone Over Ruthenium Catalysts Supported on Metal–Organic Frameworks in Aqueous Medium

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Liquid-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was investigated over Metal–Organic Framework- and zeolite-supported ruthenium catalysts in aqueous media at low reaction temperature. Ru/MIL-101(Cr) showed the highest activities over Ru/MIL-100(Cr) and the investigated Ru/zeolite catalysts in terms of both turn over frequencies (TOFs) for LA-to-GVL transformation and GVL formation rate. The catalytic activity of Ru/MIL-100(Cr) was comparable to Ru/HY-zeolite (Si/Al ≥ 5.2). The Ru/MIL-101(Cr) provided a combination of both high acidity of MIL-101(Cr) support and high dispensability of metallic sites, which promotes LA hydrogenation to 4-hydroxypentanoic acid and subsequent esterification of 4-hydroxypentanoic acid to GVL via a simultaneous access of LA into the both sites. Under the investigated mild reaction conditions, both GVL selectivity and yield exceeding 99 % with a full conversion of LA were obtained by using Ru/MIL-101(Cr) catalyst at a reaction temperature of 70°C after 5 h under H2 pressure of 1.0 MPa. Moreover, Ru/MIL-101(Cr) can be easily reused at least for four times.

Graphical Abstract

Ruthenium immobilized on Metal–Organic Frameworks is efficiently used as recyclable catalyst for levulinic acid hydrogenation to biomass-based γ-valerolactone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wright WRH, Palkovits R (2012) ChemSusChem 5:1657–1667

    Article  CAS  Google Scholar 

  2. Alonso DM, Wettstein SG, Dumesic JA (2013) Green Chem 15:584–595

    Article  CAS  Google Scholar 

  3. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Science 327:1110–1114

    Article  CAS  Google Scholar 

  4. Bond JQ, Alonso DM, West RM, Dumesic JA (2010) Langmuir 26:16291–16298

    Article  CAS  Google Scholar 

  5. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) Green Chem 10:238–242

    Article  Google Scholar 

  6. Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Green Chem 12:574–577

    Article  CAS  Google Scholar 

  7. Serrano-Ruiz JC, Braden DJ, West RM, Dumesic JA (2010) Appl Catal B Environ 100:184–189

    Article  CAS  Google Scholar 

  8. Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Angew Chem Int Ed 49:4479–4483

    Article  CAS  Google Scholar 

  9. Bond JQ, Wang D, Alonso DM, Dumesic JA (2011) J Catal 281:290–299

    Article  CAS  Google Scholar 

  10. Jessop PG (2011) Green Chem 13:1391–1398

    Article  CAS  Google Scholar 

  11. Wettstein SG, Alonso DM, Chong Y, Dumesic JA (2012) Energy Environ Sci 5:8199–8203

    Article  CAS  Google Scholar 

  12. Mehdi H, Fabos V, Tuba R, Bodor A, Mika LT, Horvath IT (2008) Top Catal 48:49–54

    Article  CAS  Google Scholar 

  13. Manzer LE (2004) Appl Catal A Gen 272:249–256

    Article  CAS  Google Scholar 

  14. Lange JP, Vestering JZ, Haan RJ (2007) Chem Commun 33:3488–3490

    Article  Google Scholar 

  15. Upare PP, Lee JM, Hwang DW, Halligudi SB, Hwang YK, Chang JS (2011) J Ind Eng Chem 17:287–292

    Article  CAS  Google Scholar 

  16. Upare PP, Lee JM, Hwang YK, Hwang DW, Lee JH, Halligudi SB, Hwang JS, Chang JS (2011) ChemSusChem 4:1749–1752

    Article  CAS  Google Scholar 

  17. Chalid M, Broekhuis AA, Heeres HJ (2011) J Mol Catal A: Chem 341:14–21

    Article  CAS  Google Scholar 

  18. Li W, Xie JH, Lin H, Zhou QL (2012) Green Chem 14:2388–2390

    Article  CAS  Google Scholar 

  19. Rajeev SA, Larry AC (2012) Chem Phys Lett 541:21–26

    Article  Google Scholar 

  20. Deng J, Wang Y, Pan T, Xu Q, Guo QX, Fu Y (2013) ChemSusChem 6:1163–1167

    Article  CAS  Google Scholar 

  21. Yan K, Liao JY, Wu X, Xie XM (2013) RSC Adv 3:3853–3856

    Article  CAS  Google Scholar 

  22. Hengne AM, Rode CV (2012) Green Chem 14:1064–1072

    Article  CAS  Google Scholar 

  23. Luo WH, Deka U, Beale AM, van Eck ERH, Bruijnincx PCA, Weckhuysen BM (2013) J Catal 301:175–186

    Article  CAS  Google Scholar 

  24. Wu ZJ, Ge SH, Ren CX, Zhang MH, Yi PA, Xu CM (2012) Green Chem 14:3336–3343

    Article  CAS  Google Scholar 

  25. Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo QX (2010) ChemSusChem 3:1172–1175

    Article  CAS  Google Scholar 

  26. Luque R, Clark JH (2010) Catal Commun 11:928–931

    Article  CAS  Google Scholar 

  27. Abdelrahman OA, Heyden A, Bond JQ (2014) ACS Catal 4:1171–1181

    Article  CAS  Google Scholar 

  28. Selva M, Gottardo M, Perosa A (2013) ACS Sustain Chem Eng 1:180–189

    CAS  Google Scholar 

  29. Yan ZP, Lin L, Liu SJ (2009) Energy Fuels 23:3853–3858

    Article  CAS  Google Scholar 

  30. Heeres H, Handana R, Chunai D, Rasrendra CB, Girisuta B, Heeres HJ (2009) Green Chem 11:1247–1255

    Article  CAS  Google Scholar 

  31. Galletti AMR, Antonetti C, DeLuise V, Martinelli MA (2012) Green Chem 14:688–694

    Article  CAS  Google Scholar 

  32. Sudhakar M, Kantam ML, Jaya VS, Kishore R, Ramanujachary KV, Venugopal A (2014) Catal Commun 50:101–104

    Article  CAS  Google Scholar 

  33. Yao YR, Wang ZQ, Zhao S, Wang DH, Wu ZJ, Zhang MH (2014) Catal Today 234:245–250

    Article  CAS  Google Scholar 

  34. Galletti AMR, Antonetti C, Ribechini E, Colombini MP, oDiNasso NN, Bonari E (2013) Appl Energy 102:157–162

    Article  CAS  Google Scholar 

  35. Du XL, Liu YM, Wang JQ, Cao Y, Fan KN (2013) Chin J Catal 34:993–1001

    Article  CAS  Google Scholar 

  36. Yan K, Lafleur T, Wu GS, Liao JY, Ceng C, Xie XM (2013) Appl Catal A 468:52–58

    Article  CAS  Google Scholar 

  37. Yan K, Lafleur T, Jarvis C, Wu GS (2014) J Clean Prod 72:230–232

    Article  CAS  Google Scholar 

  38. Testa ML, Corbel-Demailly L, Parola VL, Venezia AM, Pinel C (2015) Catal Today 257:291–296

    Article  CAS  Google Scholar 

  39. Chia M, Dumesic JA (2011) Chem Commun 47:12233–12235

    Article  CAS  Google Scholar 

  40. Sen SM, Henao CA, Braden DJ, Dumesic JA, Maravelias CT (2012) Chem Eng Sci 67:57–67

    Article  Google Scholar 

  41. Braden DJ, Henao CA, Heltzel J, Maravelias CC, Dumesic JA (2011) Green Chem 13:1755–1765

    Article  CAS  Google Scholar 

  42. Alonso DM, Wettstein SG, Bond JQ, Root TW, Dumesic JA (2011) ChemSusChem 4:1078–1081

    Article  CAS  Google Scholar 

  43. Wettstein SG, Bond JQ, Alonso DM, Pham HN, Datye AK, Dumesic JA (2012) Appl Catal B 117–118:321–329

    Article  Google Scholar 

  44. Deng L, Li J, Lai DM, Fu Y, Guo QX (2009) Angew Chem Int Ed 48:6529–6532

    Article  CAS  Google Scholar 

  45. Son PA, Nishimura S, Ebitani K (2014) RSC Adv 4:10525–10530

    Article  CAS  Google Scholar 

  46. Nadgeri JM, Hiyoshi N, Yamaguchi A, Sato O, Shirai M (2014) Appl Catal A 470:215–220

    Article  CAS  Google Scholar 

  47. Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K (2011) Green Chem 13:810–812

    Article  CAS  Google Scholar 

  48. Mai EF, Machado MA, Davies TE, Lopez-Sanchez JA, daSilva VT (2014) Green Chem 16:4092–4097

    Article  CAS  Google Scholar 

  49. Ortiz-Cervantes C, García JJ (2013) Chim Acta 397:124–128

    CAS  Google Scholar 

  50. Delhomme C, Schaper L-A, Zhang-Preße M, Raudaschl-Sieber G, Weuster-Botz D, Kühn FE (2013) J Organomet Chem 724:297–299

    Article  CAS  Google Scholar 

  51. Ranocchiari M, van Bokhoven J (2011) Phys Chem Chem Phys 13:6388–6396

    Article  CAS  Google Scholar 

  52. Gascon J, Corma A, Kapteijn F, Llabrési Xamena FX (2014) ACS Catal 4:361–378

    Article  CAS  Google Scholar 

  53. Dhakshinamoorthy A, Opanasenko M, Čejka J, Garcia H (2013) Catal Sci Technol 3:2509–2540

    Article  CAS  Google Scholar 

  54. Corma A, García H, Llabrési Xamena FX (2010) Chem Rev 110:4606–4655

    Article  CAS  Google Scholar 

  55. Hwang YK, Hong D-Y, Chang J-S, Jhung SH, Seo Y-K, Kim J, Vimont A, Daturi M, Serre C, Férey G (2008) Angew Chem Int Ed 47:4144–4148

    Article  CAS  Google Scholar 

  56. Hong D-Y, Hwang YK, Serre C, Férey G, Chang J-S (2009) Adv Funct Mater 19:1537–1552

    Article  CAS  Google Scholar 

  57. Senkovska I, Kaskel S (2008) Microporous Mesoporous Mater 112:108–115

    Article  CAS  Google Scholar 

  58. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) Science 309:2040–2042

    Article  Google Scholar 

  59. Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Adv Synth Catal 352:3022–3030

    Article  CAS  Google Scholar 

  60. Liu HL, Li YW, Luque R, Jiang HF (2011) Adv Synth Catal 353:3107–3113

    Article  CAS  Google Scholar 

  61. Zhang YM, Degirmenci V, Li C, Hensen EJM (2011) ChemSusChem 4:59–64

    Article  Google Scholar 

  62. Akiyama G, Matsuda R, Sato H, Takata M, Kitagawa S (2011) Adv Mater 23:3294–3297

    Article  CAS  Google Scholar 

  63. Chen JZ, Li KG, Chen LM, Liu RL, Huang X, Ye DQ (2014) Green Chem 16:2490–2499

    Article  CAS  Google Scholar 

  64. Chen JZ, Wang SP, Huang J, Chen LM, Ma LL, Huang X (2013) ChemSusChem 6:1545–1555

    Article  CAS  Google Scholar 

  65. Chen JZ, Liu RL, Gao H, Chen LM, Ye DQ (2014) J Mater Chem A 2:7205–7213

    Article  CAS  Google Scholar 

  66. Llewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, DeWeireld G, Chang J-S, Hong D-Y, Hwang YK, Jhung SH, Férey G (2008) Langmuir 24:7245–7250

    Article  CAS  Google Scholar 

  67. Juan-Alcaňiz J, Goesten MG, Ramos-Fernandez EV, Gascon J, Kapteijn F (2012) New J Chem 36:977–987

    Article  Google Scholar 

  68. Du X-L, Bi Q-Y, Liu Y-M, Cao Y, He H-Y, Fan K-N (2012) Green Chem 14:935–939

    Article  CAS  Google Scholar 

  69. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Angew Chem Int Ed 49:5510–5514

    Article  CAS  Google Scholar 

  70. Corbel-Demailly L, Ly B-K, Minh D-P, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C (2013) ChemSusChem 6:2388–2395

    Article  CAS  Google Scholar 

  71. Mehdi H, Fabos V, Tuba R, Bodor A, Mika LT, Horváth IT (2008) Top Catal 48:49–54

    Article  CAS  Google Scholar 

  72. Phanopoulos A, White AJP, Long NJ, Miller PW (2015) ACS Catal 5:2500–2512

    Article  CAS  Google Scholar 

  73. Primo A, Concepcion P, Corma A (2011) Chem Commun 47:3613–3615

    Article  CAS  Google Scholar 

  74. Al-Shaal MG, Wright WRH, Palkovits R (2012) Green Chem 14:1260–1263

    Article  CAS  Google Scholar 

  75. Kumar VV, Naresh G, Sudhakar M, Tardio J, Bhargava S, Venugopal A (2015) Appl Catal A Gen 505:217–223

    Article  CAS  Google Scholar 

  76. Putrakumar B, Nagaraju N, Kumar VP, Chary KVR (2015) Catal Today 250:209–217

    Article  CAS  Google Scholar 

  77. Yan K, Lafleur T, Liao JY (2013) J Nanopart Res 15:1906–1913

    Article  Google Scholar 

  78. Zhang W, Chen JZ, Liu RL, Wang SP, Chen LM, Li KG (2014) ACS Sustainable Chem Eng 2:683–691

    Article  CAS  Google Scholar 

  79. Chen GZ, Wu SJ, Liu HL, Jiang HF, Li YW (2013) Green Chem 15:230–235

    Article  CAS  Google Scholar 

  80. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR (2004) J Am Chem Soc 126:8028–8037

    Article  CAS  Google Scholar 

  81. Duman S, Ozkar S (2013) Int J Hydrogen Energ 38:10000–10011

    Article  CAS  Google Scholar 

  82. Cao N, Liu T, Su J, Wu XJ, Luo W, Cheng GZ (2014) New J Chem 38:4032–4035

    Article  CAS  Google Scholar 

  83. Yuan BZ, Pan YY, Li YW, Yin BL, Jiang HF (2010) Angew Chem Int Ed 49:4054–4058

    Article  CAS  Google Scholar 

  84. Pan YY, Yuan BZ, Li YW, He DH (2010) Chem Commun 46:2280–2282

    Article  CAS  Google Scholar 

  85. Zhou XC, Xu WL, Liu GK, Panda D, Chen P (2010) J Am Chem Soc 132:138–146

    Article  CAS  Google Scholar 

  86. Gopiraman M, Babu SG, Khatri Z, Kai W, Kim YA, Endo M, Karvembu R, Kim IS (2013) J Phys Chem C 117:23582–23596

    Article  CAS  Google Scholar 

  87. Chakroune N, Viau G, Ammar S, Poul L, Veautier D, Chehimi MM, Mangeney C, Villain F, Fievet F (2005) Langmuir 21:6788–6796

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from National Natural Science Foundation of China (21472189), National Basic Research Program of China (973 Program, 2012CB215304), Natural Science Foundation of Guangdong Province, China (2015A030312007), and Science and Technology Planning Project of Guangdong Province, China (2015A010106010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhu Chen.

Additional information

Yuanyuan Guo and Yonglei Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Li, Y., Chen, J. et al. Hydrogenation of Levulinic Acid into γ-Valerolactone Over Ruthenium Catalysts Supported on Metal–Organic Frameworks in Aqueous Medium. Catal Lett 146, 2041–2052 (2016). https://doi.org/10.1007/s10562-016-1819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1819-1

Keywords

Navigation