Skip to main content

Advertisement

Log in

Effect of Cu–Mo Activities on the Ni–Cu–Mo/Al2O3 Catalyst for CO2 Reforming of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Ni–Cu–Mo/Al2O3 catalysts with different metal contents were prepared by sequential impregnation method. The performance of the catalysts for carbon dioxide reforming of methane was investigated in a quartz tubular reactor at CH4/CO2 ratio of 4/6, feed gas flux of 100 mL/min, catalysts 460 mg, temperature range of 600–900 °C and atmospheric pressure. The catalysts were characterized by XRD, XPS, BET, CO2-TPD, TG, EDS and SEM. The performance and characterization results showed that the addition of Cu and Mo was beneficial for the reaction. The formation of spinel (NiMoO4, NiAl2O4, Cu6Mo4O15) and alloy (Ni3Mo, Cu3.8Ni) structures could significantly improve the catalytic activity and prevent the generation of carbon deposition. XRD patterns of the catalyst with the mass ratio of Ni:Mo = 0.75 after reaction suggested Mo2C formation which could eliminate the coke and extend the stability. The catalyst with the mass ratio of Ni:Mo = 0.75 showed better activity and still remained highly active under the condition of 800 °C for 60 h. Therefore, the highly effective Ni–Cu–Mo/Al2O3 catalyst could be a potential catalyst for carbon dioxide reforming of methane.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nader R, Mohammad H, Ali AB, Somaiyeh A, Mahdi FJ (2014) Energy Convers Manag 84:50–59

    Article  Google Scholar 

  2. Dong XF, Cai XL, Song YB, Lin WM (2007) J Nat Gas Chem 16(1):31–36

    Article  CAS  Google Scholar 

  3. Choi JS, Moon KI, Kim YG, Lee JS, Kim CH, David L (1998) Catal Lett 52(1–2):43–47

    Article  CAS  Google Scholar 

  4. Huang T, Huang W, Huang J, Ji P (2011) Fuel Process Technol 92(10):1868–1875

    Article  CAS  Google Scholar 

  5. Quincoces CE, Vargas SP, Grange P, Gonzάlez MG (2002) Mater Lett 56(5):698–704

    Article  CAS  Google Scholar 

  6. Borowiecki T, Gac W, Denis A (2004) Appl Catal A 270(1–2):27–36

    Article  CAS  Google Scholar 

  7. Liu HT, Tian H, Wang XL (2007) J Mol Catal (China) 21(4):304–307

    CAS  Google Scholar 

  8. Shi C, Zhang AJ, Li XS, Zhang SH, Zhu AM, Ma YF, Au CT (2012) Appl Catal A 431–432:164–170

    Article  Google Scholar 

  9. Chen L, Hao ZD, Yang TZ (2014) Int J Hydrogen Energy 39:15474–15481

    Article  CAS  Google Scholar 

  10. Djaidja A, Messaoudi H, Kaddeche D (2015) Int J Hydrogen Energy 40(14):4989–4995

    Article  CAS  Google Scholar 

  11. Donald DG, Bartholomew CH (1981) J Catal 67:186–206

    Article  Google Scholar 

  12. Wang SB, Lu GQM (1988) Appl Catal B 16(3):269–277

    Article  Google Scholar 

  13. Reddy BM, Rao KN, Reddy GK, Khan A, Park SE (2007) J Phys Chem C 11(50):18751–18758

    Article  Google Scholar 

  14. Sheerin E, Reddy GK, Smirniotis P (2016) Catal Today 263:75–83

    Article  CAS  Google Scholar 

  15. Lee HY, Kim AR, Park MJ, Jo JM, Lee DH, Bae JW (2015) Chem Eng J 280:771–781

    Article  CAS  Google Scholar 

  16. Survilienè S, Cešūuniené A, Jasulaitiené V, Jureviciūte I (2012) Appl Surf Sci 258:9902–9906

    Article  Google Scholar 

  17. Jian Li.(2014) Studies on Stability and Coke-Resistant properties of CoNi Alloy Catalysts for Dry Reforming [D].East China University of Science and Technology.

  18. Ivanova TM, Kochur AG, Maslakov KI, Kiskin MA, Savilov SV, Lunin VV, Novotortsev VM, Eremenko IL (2015) J Electron Spectrosc Relat Phenom 205:1–5

    Article  CAS  Google Scholar 

  19. Kukushkin RG, Bulavchenko OA, Kaichev VV, Yakovlev VA (2015) Appl Catal B 163:531–538

    Article  CAS  Google Scholar 

  20. Zhao J, Li YX, Zhu YQ, Wang Y, Wang CY (2015) Appl Catal A 510:34–41

    Article  Google Scholar 

  21. Rahemi N, Haghighi M, Babaluo AA (2014) Energy Convers Manag 84:50–59

    Article  CAS  Google Scholar 

  22. Sato AG, Volanti DP, Meira DM, Damyanova S, Longo E (2013) J Catal 307:1–17

    Article  CAS  Google Scholar 

  23. Naeem MA, Al-Fatesh AS, Abasaeed AE, Fakeeha AH (2014) Fuel Process Technol 122:141–152

    Article  CAS  Google Scholar 

  24. Tsipouriari VA, Efstathiou AM, Zhang ZL, Verykios XE (1994) Catal Today 21(2–3):589–595

    Google Scholar 

Download references

Acknowledgments

Financial supports from Shandong Excellent Young Scientists Fund (BS2011NJ006) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xumei Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, X., Wang, G., Huang, L. et al. Effect of Cu–Mo Activities on the Ni–Cu–Mo/Al2O3 Catalyst for CO2 Reforming of Methane. Catal Lett 146, 2129–2138 (2016). https://doi.org/10.1007/s10562-016-1814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1814-6

Keywords

Navigation