Skip to main content
Log in

Evolution of N-Coordinated Iron–Carbon (FeNC) Catalysts and Their Oxygen Reduction (ORR) Performance in Acidic Media at Various Stages of Catalyst Synthesis: An Attempt at Benchmarking

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The objective of this study was to understand the role of iron and the heat treatment steps involved in nitrogen-coordinated iron-carbon (FeNC) catalyst synthesis. We have studied the oxygen reduction reaction (ORR) performance of these catalysts as they evolve from their most crude and inactive form to their most active form. Electrochemical half-cell and fuel cell tests suggest that the presence of Fe was crucial in these samples. The high-temperature heat treatment (once in argon and then in ammonia) at temperatures ≥950 °C were also critical in imparting these catalysts with their highest activity; however, significant loss of activity was observed with cycling and potential hold at 0.5 V for 100 h. In addition, acid-washing after the first or the second pyrolysis steps produced a marked decrease in ORR activity relative to their unwashed counterparts. We also report findings from our efforts towards benchmarking FeNC catalysts for oxygen reduction reaction electrocatalysis. Specifically, we focus on correlating the specific kinetic current (iK) at 0.75 V to electrochemically accessible surface area (EASA) and roughness factor (RF) determined from electrochemical double layer capacitance measurements. 57Fe Mössbauer spectroscopy was employed to shed light into the nature of active sites in FeNC catalysts and provide insights into their deactivation behavior caused by acid-washing. The results suggest planar FeN4 doublet (Fe2+, low spin) as an active site in these materials, which may be leached away in acid, explaining their decreased activity after acid washing. Results for characterization experiments using X-ray photoelectron spectroscopy, temperature programmed oxidation and X-ray absorption spectroscopy, superconducting quantum interference device magnetometry are also presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jasinski R (1965) J Electrochem Soc 112:526

    Article  CAS  Google Scholar 

  2. Bagotzky VS, Tarasevich MR, Radyushkina KA, Levina OA, Andrusyova SI (1977) J Power Sources 2:233

    Article  Google Scholar 

  3. Gupta S, Tryk D, Bae I, Aldred W, Yeager E (1989) J Appl Electrochem 19:19

    Article  CAS  Google Scholar 

  4. He P, Lefevre M, Faubert G, Dodelet JP (1999) J New Mater Electrochem Syst 2:243

    CAS  Google Scholar 

  5. Lefevre M, Dodelet JP, Bertrand P (2002) J Phys Chem B 106:8705

    Article  CAS  Google Scholar 

  6. Jaouen F, Lefevre M, Dodelet J-P, Cai M (2006) J Phys Chem B 110:5553

    Article  CAS  Google Scholar 

  7. Charreteur F, Ruggeri S, Jaouen F, Dodelet JP (2008) Electrochim Acta 53:6881

    Article  CAS  Google Scholar 

  8. Lefevre M, Dodelet J-P (2008) Electrochim Acta 53:8269

    Article  CAS  Google Scholar 

  9. Proietti E, Dodelet JP (2008) ECS Trans 16:393

    Article  CAS  Google Scholar 

  10. Proietti E, Ruggeri S, Dodelet J-P (2008) J Electrochem Soc 155:B340

    Article  CAS  Google Scholar 

  11. Herranz J, Jaouen F, Dodelet J-P (2009) ECS Trans 25:117

    Article  CAS  Google Scholar 

  12. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Science 324:71

    Article  CAS  Google Scholar 

  13. Herranz J, Jaouen F, Lefevre M, Ulrike KI, Proietti E, Dodelet JP, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda TM, Mukerjee S (2011) J Phys Chem C 115:16087

    Article  CAS  Google Scholar 

  14. Proietti E, Jaouen F, Lefevre M, Larouche N, Tian J, Herranz J, Dodelet JP (2011) Nat Commun 2:416

    Article  Google Scholar 

  15. Kramm UI, Lefevre M, Larouche N, Schmeisser D, Dodelet JP (2014) J Am Chem Soc 136:978

    Article  CAS  Google Scholar 

  16. Larouche N, Chenitz R, Lefèvre M, Proietti E, Dodelet J-P (2014) Electrochim Acta 115:170

    Article  CAS  Google Scholar 

  17. Lefevre M, Dodelet JP, Bertrand P (2000) J Phys Chem B 104:11238

    Article  CAS  Google Scholar 

  18. Kramm UI, Herranz J, Larouche N, Arruda TM, Lefevre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Mukerjee S, Dodelet JP (2012) Phys Chem Chem Phys 14:11673

    Article  CAS  Google Scholar 

  19. Matter PH, Zhang L, Ozkan US (2006) J Catal 239:83

    Article  CAS  Google Scholar 

  20. Matter PH, Wang E, Ozkan US (2006) J Catal 243:395

    Article  CAS  Google Scholar 

  21. Matter PH, Wang E, Millet J-MM, Ozkan US (2007) J Phys Chem C 111:1444

    Article  CAS  Google Scholar 

  22. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2006) J Phys Chem B 110:18374

    Article  CAS  Google Scholar 

  23. von Deak D, Singh D, King JC, Ozkan US (2012) Appl Catal B-Environ 113–114:126

    Article  Google Scholar 

  24. Yadav RM, Wu J, Kochandra R, Ma L, Tiwary CS, Ge L, Ye G, Vajtai R, Lou J, Ajayan PM (2015) ACS Appl Mater Interfaces 7:11991

    Article  CAS  Google Scholar 

  25. Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek J-B, Dai L (2012) Angew Chem Int Ed 51:4209

    Article  CAS  Google Scholar 

  26. Yu D, Nagelli E, Du F, Dai L (2010) J Phys Chem Lett 1:2165

    Article  CAS  Google Scholar 

  27. Qu L, Yong L, Baek J-B, Dai L (2010) ACS Nano 4:1321

    Article  CAS  Google Scholar 

  28. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760

    Article  CAS  Google Scholar 

  29. Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L (2011) Angew Chem Int Ed 50:11756

    Article  CAS  Google Scholar 

  30. Singh D, Tian J, Mamtani K, King J, Miller JT, Ozkan US (2014) J Catal 317:30

    Article  CAS  Google Scholar 

  31. Singh D, Mamtani K, Bruening CR, Miller JT, Ozkan US (2014) ACS Catal 4:3454

    Article  CAS  Google Scholar 

  32. von Deak D, Singh D, Biddinger EJ, King JC, Bayram B, Miller JT, Ozkan US (2012) J Catal 285:145

    Article  Google Scholar 

  33. Jaouen F, Herranz J, Lefevre M, Dodelet J-P, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson TS, Pylypenko S, Atanassov P, Ustinov EA (2009) ACS Appl Mater Interfaces 1:1623

    Article  CAS  Google Scholar 

  34. Long D, Li W, Qiao W, Miyawaki J, Yoon S-H, Mochida I, Ling L (2011) Chem Commun 47:9429

    Article  CAS  Google Scholar 

  35. Wang X, Zhou J, Fu H, Li W, Fan X, Xin G, Zheng J, Li X (2014) J Mater Chem A 2:14064

    Article  CAS  Google Scholar 

  36. Li Q, Wu G, Cullen DA, More KL, Mack NH, Chung HT, Zelenay P (2014) ACS Catal 4:3193

    Article  CAS  Google Scholar 

  37. Wu G, Swaidan R, Li D, Li N (2008) Electrochim Acta 53:7622

    Article  CAS  Google Scholar 

  38. Braun A, Bärtsch M, Merlo O, Schnyder B, Schaffner B, Kötz R, Haas O, Wokaun A (2003) Carbon 41:759

    Article  CAS  Google Scholar 

  39. Wu G, Chen Y-S, Xu B-Q (2005) Electrochem Commun 7:1237

    Article  CAS  Google Scholar 

  40. Wu G, Xu B-Q (2007) J Power Sources 174:148

    Article  CAS  Google Scholar 

  41. Shi H (1996) Electrochim Acta 41:1633

    Article  CAS  Google Scholar 

  42. Young AP, Stumper J, Gyenge E (2009) J Electrochem Soc 156:B913

    Article  CAS  Google Scholar 

  43. Liu G, Li X, Ganesan P, Popov BN (2010) Electrochim Acta 55:2853

    Article  CAS  Google Scholar 

  44. Rao CV, Cabrera CR, Ishikawa Y (2010) J Phys Chem Lett 1:2622

    Article  CAS  Google Scholar 

  45. Kundu S, Nagaiah TC, Xia W, Wang Y, Van Dommele S, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M (2009) J Phys Chem C 113:14302

    Article  CAS  Google Scholar 

  46. Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) J Power Sources 183:34

    Article  CAS  Google Scholar 

  47. Liu G, Li X, Ganesan P, Popov BN (2009) Appl Catal B-Environ 93:156

    Article  CAS  Google Scholar 

  48. Subramanian NP, Li X, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee J-W, Popov BN (2009) J Power Sources 188:38

    Article  CAS  Google Scholar 

  49. Li X, Liu G, Popov BN (2010) J Power Sources 195:6373

    Article  CAS  Google Scholar 

  50. Palaniselvam T, Kannan R, Kurungot S (2011) Chem Commun 47:2910

    Article  CAS  Google Scholar 

  51. Faubert G, Cote R, Guay D, Dodelet JP, Denes G, Poleunis C, Bertrand P (1998) Electrochim Acta 43:1969

    Article  CAS  Google Scholar 

  52. Stanczyk K, Dziembaj R, Piwowarska Z, Witkowski S (1995) Carbon 33:1383

    Article  CAS  Google Scholar 

  53. Ozaki J-i, Anahara T, Kimura N, Oya A (2006) Carbon 44:3358

    Article  CAS  Google Scholar 

  54. Arechederra RL, Artyushkova K, Atanassov P, Minteer SD (2010) ACS Appl Mater Interfaces 2:3295

    Article  CAS  Google Scholar 

  55. Li WM, Wu J, Higgins DC, Choi JY, Chen ZW (2012) ACS Catal 2:2761

    Article  CAS  Google Scholar 

  56. Tylus U, Jia Q, Strickland K, Ramaswamy N, Serov A, Atanassov P, Mukerjee S (2014) J Phys Chem C 118:8999

    Article  CAS  Google Scholar 

  57. Yang J, Liu D-J, Kariuki NN, Chen LX (2008) Chem Commun 3:329

    Article  CAS  Google Scholar 

  58. Tsai C-W, Chen HM, Liu R-S, Asakura K, Zhang L, Zhang J, Lo M-Y, Peng Y-M (2011) Electrochim Acta 56:8734

    Article  CAS  Google Scholar 

  59. Liu S-H, Wu J-R, Pan C-J, Hwang B-J (2014) J Power Sources 250:279

    Article  CAS  Google Scholar 

  60. Bron M, Radnik J, Fieber-Erdmann M, Bogdanoff P, Fiechter S (2002) J Electroanal Chem 535:113

    Article  CAS  Google Scholar 

  61. Schaaf P (1998) Hyperfine Interact 111:113

    Article  CAS  Google Scholar 

  62. Kramm UI, Herrmann-Geppert I, Bogdanoff P, Fiechter S (2011) J Phys Chem C 115:23417

    Article  CAS  Google Scholar 

  63. Kramm UI, Abs-Wurmbach I, Herrmann-Geppert I, Radnik J, Fiechter S, Bogdanoff P (2011) J Electrochem Soc 158:B69

    Article  CAS  Google Scholar 

  64. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy, vol 1, 1st edn. Chapman and Hall Ltd, London

    Book  Google Scholar 

  65. Koslowski UI, Abs-Wurmbach I, Fiechter S, Bogdanoff P (2008) J Phys Chem C 112:15356

    Article  CAS  Google Scholar 

  66. Ferrandon M, Kropf AJ, Myers DJ, Artyushkova K, Kramm U, Bogdanoff P, Wu G, Johnston CM, Zelenay P (2012) J Phys Chem C 116:16001

    Article  CAS  Google Scholar 

  67. Kramm UI, Abs-Wurmbach I, Fiechter S, Herrmann I, Radnik J, Bogdanoff P (2009) ECS Trans 25:93

    Article  CAS  Google Scholar 

  68. Koslowski UI, Herrmann I, Bogdanoff P, Barkschat C, Fiechter S, Iwata N, Takahashi H, Nishikori H (2008) ECS Trans 13:125

    Article  CAS  Google Scholar 

  69. Herrmann I, Brueser V, Fiechter S, Kersten H, Bogdanoff P (2005) J Electrochem Soc 152:A2179

    Article  Google Scholar 

  70. Raupp GB, Delgass WN (1979) J Catal 58:348

    Article  CAS  Google Scholar 

  71. Schulenburg H, Stankov S, Schuenemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) J Phys Chem B 107:9034

    Article  CAS  Google Scholar 

  72. Biddinger EJ, Ozkan US (2007) Top Catal 46:339

    Article  CAS  Google Scholar 

  73. Wang J, Wang G, Miao S, Jiang X, Li J, Bao X (2014) Carbon 75:381

    Article  CAS  Google Scholar 

  74. Li J-S, Li S-L, Tang Y-J, Han M, Dai Z-H, Bao J-C, Lan Y-Q (2015) Chem Commun 51:2710

    Article  CAS  Google Scholar 

  75. Lee J-S, Park GS, Kim ST, Liu M, Cho J (2013) Angew Chem Int Ed Engl 52:1026

    Article  CAS  Google Scholar 

  76. Hou Y, Huang T, Wen Z, Mao S, Cui S, Chen J (2014) Adv Energy Mater 4:1

    Article  CAS  Google Scholar 

  77. Li J-S, Li S-L, Tang Y-J, Han M, Dai Z-H, Bao J-C, Lan Y-Q (2015) Chem Commun 51:2710

    Article  CAS  Google Scholar 

  78. Hu Y, Jensen JO, Zhang W, Cleemann LN, Xing W, Bjerrum NJ, Li Q (2014) Angew Chem Int Ed 53:3675

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-07ER15896. We would also like to thank Ohio Coal Research Consortium or their financial support under Subcontract No. OCRC-C-04. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and Northwestern University. Use of the APS, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit S. Ozkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamtani, K., Singh, D., Tian, J. et al. Evolution of N-Coordinated Iron–Carbon (FeNC) Catalysts and Their Oxygen Reduction (ORR) Performance in Acidic Media at Various Stages of Catalyst Synthesis: An Attempt at Benchmarking. Catal Lett 146, 1749–1770 (2016). https://doi.org/10.1007/s10562-016-1800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1800-z

Keywords

Navigation