Skip to main content

Advertisement

Log in

A Heterojunction Cu2O/N–TiO2Photocatalyst for Highly Efficient Visible Light-Driven Hydrogen Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

N–doped TiO2 effectively extends the light response range of TiO2 photocatalysts from the ultraviolet to the visible region; a p–n heterojunction would favor the separation of photogenerated electron–hole pairs, leading to high quantum efficiency, and consequently, enhanced photocatalysis. A Cu2O/N–TiO2 hybrid catalyst with p-n heterojunctions was newly prepared using a solvothermal and chemical reduction method. The hierarchical structure and valence state of copper of the Cu2O/N–TiO2 catalyst have been confirmed using X-ray diffraction, high resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The hybrid Cu2O/N–TiO2 catalyst demonstrated good photostability and excellent photocatalytic activity toward H2 production, with a rate of 11 μmol g−1 h−1 under visible light irradiation (>400 nm) of a methanol aqueous solution. This offers an inexpensive and facile approach for potential efficient solar photon-driven H2 production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamann TW (2014) Nat Mater 13:3

    Article  CAS  Google Scholar 

  2. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Chem Rev 110:6446

    Article  CAS  Google Scholar 

  3. Fujihira M, Satoh Y, Osa T (1981) Nature 293:206

    Article  CAS  Google Scholar 

  4. Kraeutler B, Bard AJ (1977) J Am Chem Soc 99:7729

    Article  CAS  Google Scholar 

  5. Nosaka Y, Koenuma K, Ushida K, Kira A (1996) Langmuir 12:736

    Article  CAS  Google Scholar 

  6. Chen X, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  Google Scholar 

  7. Ryoji A, Takeshi M, Hiroshi I, Takeshi O (2014) Chem Rev 114:9824

    Article  Google Scholar 

  8. Wang GM, Ling YC, Wang HY, Lu XH, Li Y (2014) J Photochem Photobiol, C 19:35

    Article  CAS  Google Scholar 

  9. Xu M, Da PM, Wu HY, Zhao DY, Zheng GF (2012) Nano Lett 12:1503

    Article  CAS  Google Scholar 

  10. Pu YC, Wang GM, Chang KD, Ling YC, Lin YK, Fitzmorris BC, Liu CM, Lu XH, Tong YX, Zhang JZ, Hsu YJ, Li Y (2013) Nano Lett 13:3817

    Article  CAS  Google Scholar 

  11. Zhang ZH, Zhang LB, Hedhili MN, Zhang HN, Wang P (2013) Nano Lett 13:14

    Article  CAS  Google Scholar 

  12. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  Google Scholar 

  13. Park JH, Kim S, Bard AJ (2006) Nano Lett 6:24

    Article  CAS  Google Scholar 

  14. Sun PP, Liu L, Cui SC, Liu JG (2014) Catal Lett 144:2107

    Article  CAS  Google Scholar 

  15. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 294:269

    Article  Google Scholar 

  16. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Appl Catal A 265:115

    Article  CAS  Google Scholar 

  17. Hernandez S, Cauda V, Chiodoni A, Dallorto S, Sacco A, Hidalgo D, Celasco E, Pirri CF (2014) ACS Appl Mater Interfaces 6:12153

    Article  CAS  Google Scholar 

  18. Lin KH, Chuang CY, Lee YY, Li FC, Chang YM, Liu IP, Chou SC, Lee YL (2012) J Phys Chem C 116:1550

    Article  CAS  Google Scholar 

  19. Chen L, Si ZC, Wu XD, Weng D (2014) ACS Appl Mater Interfaces 6:8134

    Article  CAS  Google Scholar 

  20. Sun S (2015) Nanoscale 7:10850

    Article  CAS  Google Scholar 

  21. Tran PD, Batabyal SK, Pramana SS, Barber J, Wong LH, Loo SCJ (2012) Nanoscale 4:3875

    Article  CAS  Google Scholar 

  22. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Nat Mater 10:456

    Article  CAS  Google Scholar 

  23. Siripala W, Ivanovskaya A, Jaramillo TF, Baeck SH, McFarland EW (2003) Sol Ener Mat Sol C 77:229

    Article  CAS  Google Scholar 

  24. Wang MY, Sun L, Lin ZQ, Cai JH, Xie KP, Lin CJ (2013) Energy Environ Sci 6:1211

    Article  CAS  Google Scholar 

  25. Huang Q, Kang F, Liu H, Li Q, Xiao X (2013) J Mater Chem A 1:2418

    Article  CAS  Google Scholar 

  26. Yang LX, Luo SL, Li Y, Xiao Y, Kang Q, Cai QY (2010) Environ Sci Technol 44:7641

    Article  CAS  Google Scholar 

  27. Liu L, Gu X, Sun C, Li H, Deng Y, Gao F, Dong L (2012) Nanoscale 4:6351

    Article  CAS  Google Scholar 

  28. Lalitha K, Sadanandam G, Kumari VD, Subrahmanyam M, Sreedhar B, Hebalkar NY (2010) J Phys Chem C 114:22181

    Article  CAS  Google Scholar 

  29. Foo WJ, Zhang C, Ho GW (2013) Nanoscale 5:759

    Article  CAS  Google Scholar 

  30. Wang D, Pan XY, Wang GT, Yi ZG (2015) RSC Adv 5:22038

    Article  CAS  Google Scholar 

  31. Luo ZW, Jiang H, Li D, Hu LZ, Geng WH, Wei P, OuYang PK (2014) RSC Adv 4:17797

    Article  CAS  Google Scholar 

  32. Livraghi S, Paganini MC, Giamello E, Selloni A, Valentin CD, Pacchioni G (2006) J Am Chem Soc 128:15666

    Article  CAS  Google Scholar 

  33. Li YP, Wang BW, Liu SH, Duan XF, Hu ZY (2015) Appl Surf Sci 324:736

    Article  CAS  Google Scholar 

  34. Bi F, Ehsan MF, Liu W, He T (2015) Chin J Chem 33:112

    Article  CAS  Google Scholar 

  35. Asahi R, Morikawa T (2007) Chem Phys 339:57

    Article  CAS  Google Scholar 

  36. Geng Z, Zhang Y, Yuan X, Huo MX, Zhao YH, Lu Y, Qiu Y (2015) J Alloy Compd 644:734

    Article  CAS  Google Scholar 

  37. Liang XD, Gao L, Yang SW, Sun J (2009) Adv Mater 21:2068

    Article  CAS  Google Scholar 

  38. Huang WC, Lyu LM, Yang YC, Huang MH (2012) J Am Chem Soc 134:1261

    Article  CAS  Google Scholar 

  39. Yu JG, Wang SH, Low JX, Xiao W (2013) Phys Chem Chem Phys 15:16883

    Article  CAS  Google Scholar 

  40. Kumar DP, Reddy NL, Kumari MM, Srinivas B, Kumari VD, Sreedhar B, Roddatis V, Bondarchuk O, Karthik M, Neppolian B, Shankar MV (2015) Sol Ener Mat Sol C 136:157

    Article  Google Scholar 

  41. Liu YX, Zhang BS, Luo LF, Chen XY, Wang ZL, Wu EL, Su DS, Huang WX (2015) Angew Chem Int Ed 54:15260

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the NSF of China (No. 21271072, 21571062 to JGL; 21571063 to SCC), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Shanghai Pujiang Program (No. 13J1401900) to JGL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Cong Cui or Jin-Gang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Wei, WD., Cui, SC. et al. A Heterojunction Cu2O/N–TiO2Photocatalyst for Highly Efficient Visible Light-Driven Hydrogen Production. Catal Lett 146, 1655–1662 (2016). https://doi.org/10.1007/s10562-016-1790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1790-x

Keywords

Navigation