Catalysis Letters

, Volume 146, Issue 8, pp 1574–1580 | Cite as

Co–Rh Nanoparticles for the Hydrogenation of Carbon Monoxide: Catalytic Performance Towards Alcohol Production and Ambient Pressure X-Ray Photoelectron Spectroscopy Study

  • Wen-Chi Liu
  • Gérôme Melaet
  • Walter T. Ralston
  • Selim Alayoglu
  • Yonatan Horowitz
  • Rong Ye
  • Tyler Hurlburt
  • Baohua Mao
  • Ethan Crumlin
  • Miquel Salmeron
  • Gabor A. Somorjai
Article

Abstract

5 nm Co–Rh bimetallic nanoparticles with narrow size distributions and three different atomic compositions (2, 10, and 16 % Rh) were synthesized using a colloidal method. The bimetallic nanoparticles were loaded into mesoporous silica support MCF-17 and utilized in the catalytic hydrogenation of CO (Fischer–Tropsch synthesis). As compared to the pure 5 nm Co/MCF-17 catalyst, the bimetallic Co–Rh catalysts showed a similar activity while enhancing the selectivity towards alcohols, as evidenced by an increased ratio of alcohol to hydrocarbon products. Furthermore, larger alcohols such as propanol were formed with the addition of Rh, which is not observed with the pure Co/MCF-17 catalyst. In situ synchrotron based Ambient Pressure X-ray Photoelectron Spectroscopy studies on the Co–Rh samples revealed that Rh is segregated to the surface of the nanoparticles under reaction conditions, which plays an important role in altering the selectivity towards alcohol production. An optimum surface Rh concentration exists at ~9 at.%, where a fivefold enhancement in the alcohol-to-hydrocarbon ratio was achieved.

Graphical Abstract

Keywords

Fischer–Tropsch synthesis Ambient pressure X-ray photoelectron spectroscopy Co–Rh bimetallic nanoparticles Alcohol production 

Supplementary material

10562_2016_1782_MOESM1_ESM.docx (931 kb)
Supplementary material 1 (DOCX 930 kb)

References

  1. 1.
    Klerk A (2007) Green Chem 9:560–565CrossRefGoogle Scholar
  2. 2.
    Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744CrossRefGoogle Scholar
  3. 3.
    Lögdberg S, Lualdi M, Järås S, Walmsley JC, Blekkan EA, Rytter E, Holmen A (2010) J Catal 274:84–98CrossRefGoogle Scholar
  4. 4.
    Iglesia E (1997) Appl Catal A 161:59–78CrossRefGoogle Scholar
  5. 5.
    Zhang Q, Kang J, Wang Y (2010) ChemCatChem 2:1030–1058CrossRefGoogle Scholar
  6. 6.
    Calderone VR, Shiju NR, Ferreb DC, Rothenberga G (2011) Green Chem 13:1950–1959CrossRefGoogle Scholar
  7. 7.
    Burch R, Petch MI (1992) Appl Catal A 88:39–60CrossRefGoogle Scholar
  8. 8.
    Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Nat Mater 6:507–511CrossRefGoogle Scholar
  9. 9.
    Pei Y-P, Liu J-X, Zhao Y-H, Ding Y-J, Liu T, Dong W-D, Zhu H-J, Su H-Y, Yan L, Li J-L, Li W-X (2015) ACS Catal 5:3620–3624CrossRefGoogle Scholar
  10. 10.
    Iablokov V, Beaumont SK, Alayoglu S, Pushkarev VV, Specht C, Gao J, Alivisatos AP, Kruse N, Somorjai GA (2012) Nano Lett 12:3091–3096CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Grass ME, Habas SE, Tao F, Zhang T, Yang P, Somorjai GA (2007) J Phys Chem C 111:12243–12253CrossRefGoogle Scholar
  12. 12.
    Han Y, Lee SS, Ying JY (2007) Chem Mater 19:2292–2298CrossRefGoogle Scholar
  13. 13.
    Grass ME, Karlsson PG, Aksoy F, Lundqvist M, Wannberg B, Mun BS, Hussain Z, Liu Z (2010) Rev Sci Instrum 81:053106CrossRefGoogle Scholar
  14. 14.
    Bluhm H, Hävecker M, Knop-Gericke A, Kiskinova M, Schlögl R, Salmeron M (2007) MRS Bull 32:1022–1030CrossRefGoogle Scholar
  15. 15.
    Salmeron M, Schlogl R (2008) Surf Sci Rep 63:169–199CrossRefGoogle Scholar
  16. 16.
    Yeh JJ, Lindau I (1985) Atom Data Nucl Data 32:1–155CrossRefGoogle Scholar
  17. 17.
    Melaet G, Ralston WT, Li C-S, Alayoglu S, An K, Musselwhite N, Kalkan B, Somorjai GA (2014) J Am Chem Soc 136:2260–2263CrossRefGoogle Scholar
  18. 18.
    Melaet G, Lindeman AE, Somorjai GA (2014) Top Catal 57:500–507CrossRefGoogle Scholar
  19. 19.
    Tanuma S, Powell CJ, Penn DR (1994) Surf Interface Anal 21:165–176CrossRefGoogle Scholar
  20. 20.
    Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) Angew Chem Int Ed 47:8893–8896CrossRefGoogle Scholar
  21. 21.
    Muiioz A, Munuera G, Malet P, Gonzalez-Elipe AR, Espinos JP (1988) Surf Interface Anal 12:247–252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wen-Chi Liu
    • 1
    • 2
  • Gérôme Melaet
    • 1
    • 2
  • Walter T. Ralston
    • 1
    • 3
  • Selim Alayoglu
    • 1
    • 3
  • Yonatan Horowitz
    • 1
    • 2
  • Rong Ye
    • 1
    • 2
  • Tyler Hurlburt
    • 1
    • 3
  • Baohua Mao
    • 4
    • 5
  • Ethan Crumlin
    • 4
  • Miquel Salmeron
    • 2
    • 6
  • Gabor A. Somorjai
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Chemical Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiPeople’s Republic of China
  6. 6.Department of Materials Science and EngineeringUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations