Skip to main content
Log in

Improved Low-Temperature Activity of CuO–CeO2–ZrO2 Catalysts for Preferential Oxidation of CO in H2-Rich Streams

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, CuO–CeO2–ZrO2 catalysts for CO preferential oxidation have been prepared by ultrasound assisted reverse coprecipitation and slow coprecipitation, and characterized via BET, XRD, XPS and H2-TPR techniques, respectively. It is found that the catalyst prepared with ultrasound assisted reverse coprecipitation preserves large specific surface area, fine crystalline grain and high dispersion of active copper species. Meanwhile, the reducibility is improved significantly and more active copper species and oxygen vacancies are formed in the copper–ceria boundaries. The ultrasound assisted reverse coprecipitation prepared CuO–CeO2–ZrO2 catalyst exhibits superior low-temperature activity and CO2 selectivity, over which the temperature responding to 50 % CO conversion is as low as 67 °C, and the temperature window of full CO conversion is significantly widen from 100 to 160 °C.

Graphical Abstract

The ultrasound assisted reverse coprecipitation prepared CuO–CeO2–ZrO2 catalyst exhibits superior low-temperature activity for CO preferential oxidation and wide temperature window of full CO conversion comparing with the catalyst prepared with slow coprecipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935–938

    Article  CAS  Google Scholar 

  2. Chuang K-H, Shih K, Lu C-Y, Wey M-Y (2013) Int J Hydrog Energy 38:100–108

    Article  CAS  Google Scholar 

  3. Watanabe M, Uchida H, Ohkubo K, Igarashi H (2003) Appl Catal B 46:595–600

    Article  CAS  Google Scholar 

  4. Zhao Z, Bao T, Zeng Y, Wang G, Muhammad T (2013) Catal Commun 32:47–51

    Article  CAS  Google Scholar 

  5. Hornes A, Hungria AB, Bera P, Camara AL, Fernandez-Garcia M, Martinez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca JJ, Hanson JC, Rodriguez JA (2010) J Am Chem Soc 132:34–35

    Article  CAS  Google Scholar 

  6. Gamarra D, Munuera G, Hungria AB, Fernandez-Garcia M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodriguez JA, Martinez-Arias A (2007) J Phys Chem C 111:11026–11038

    Article  CAS  Google Scholar 

  7. Bion N, Epron F, Moreno M, Marino F, Duprez D (2008) Top Catal 51:76–88

    Article  CAS  Google Scholar 

  8. Gamarra D, Belver C, Fernandez-Garcia M, Martinez-Arias A (2007) J Am Chem Soc 129:12064–12065

    Article  CAS  Google Scholar 

  9. Ayastuy JL, Gurbani A, Gonzalez-Marcos MP, Gutierrez-Ortiz MA (2010) Int J Hydrog Energy 35:1232–1244

    Article  CAS  Google Scholar 

  10. Kim DH, Cha JE (2003) Catal Lett 86:107–112

    Article  CAS  Google Scholar 

  11. Gamarra D, Hornes A, Koppany Z, Schay Z, Munuera G, Soria J, Martinez-Arias A (2007) J Power Sources 169:110–116

    Article  CAS  Google Scholar 

  12. Reddy LH, Reddy GK, Devaiah D, Reddy BM (2012) Appl Catal A 445–446:297–305

    Article  Google Scholar 

  13. MartInez-Arias A, Fernández-GarcIa M, Gálvez O, Coronado JM, Anderson JA, Conesa JC, Soria J, Munuera G (2000) J Catal 195:207–216

    Article  CAS  Google Scholar 

  14. Ayastuy JL, Gurbani A, González-Marcos MP, Gutiérrez-Ortiz MA (2012) Int J Hydrog Energy 37:1993–2006

    Article  CAS  Google Scholar 

  15. Caputo T, Pirone R, Russo G (2006) Kinet Catal 47:756–764

    Article  CAS  Google Scholar 

  16. Ratnasamy P, Srinivas D, Satyanarayana CVV, Manikandan P, Senthil Kumaran RS, Sachin M, Shetti VN (2004) J Catal 221:455–465

    Article  CAS  Google Scholar 

  17. Moretti E, Storaro L, Talon A, Lenarda M, Riello P, Frattini R, de Yuso MdVM, Jiménez-López A, Rodríguez-Castellón E, Ternero F, Caballero A, Holgado JP (2011) Appl Catal B Environ 102:627–637

    Article  CAS  Google Scholar 

  18. Dhas NA, Ekhtiarzadeh A, Suslick KS (2001) J Am Chem Soc 123:8310–8316

    Article  CAS  Google Scholar 

  19. Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) J Catal 249:185–194

    Article  CAS  Google Scholar 

  20. Shi LM, Chu W, Deng SY, Xu HY (2008) J Nat Gas Chem 17:397–402

    Article  CAS  Google Scholar 

  21. Moretti E, Storaro L, Talon A, Riello P, Molina AI, Rodríguez-Castellón E (2015) Appl Catal B 168–169:385–395

    Article  Google Scholar 

  22. Patterson AL (1939) Phys Rev 56:978

    Article  CAS  Google Scholar 

  23. Rouquerolt J, Aunir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Pure Appl Chem 66:1739–1758

    Google Scholar 

  24. Dong XF, Zou HB, Lin WM (2006) Int J Hydrog Energy 31:2337–2344

    Article  CAS  Google Scholar 

  25. Chen Y-Z, Liaw B-J, Chen H-C (2006) Int J Hydrog Energy 31:427–435

    Article  Google Scholar 

  26. Zhu PF, Li J, Zuo SF, Zhou RX (2008) Appl Surf Sci 255:2903–2909

    Article  CAS  Google Scholar 

  27. Li J, Zhu PF, Zhou RX (2011) J Power Sources 196:9590–9598

    Article  CAS  Google Scholar 

  28. Shang D, Zhong Q, Cai W (2015) Appl Surf Sci 325:211–216

    Article  CAS  Google Scholar 

  29. Liu Y, Liu B, Wang Q, Li C, Hu W, Liu Y, Jing P, Zhao W, Zhang J (2012) J Catal 296:65–76

    Article  CAS  Google Scholar 

  30. Zeng S, Zhang L, Jiang N, Gao M, Zhao X, Yin Y, Su H (2015) J Power Sources 293:1016–1023

    Article  CAS  Google Scholar 

  31. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) Appl Catal B 62:265–273

    Article  CAS  Google Scholar 

  32. Cecilia JA, Arango-Díaz A, Rico-Pérez V, Bueno-López A, Rodríguez-Castellón E (2015) Catal Today 253:115–125

    Article  CAS  Google Scholar 

  33. Wang J, Deng L, He D, Lu J, He S, He S, Luo Y (2015) Int J Hydrog Energy 40:12478–12488

    Article  CAS  Google Scholar 

  34. Arango-Díaz A, Cecilia JA, dos Santos-Gómez L, Marrero-López D, Losilla ER, Jiménez-Jiménez J, Rodríguez-Castellón E (2015) Int J Hydrog Energy 40:11254–11260

    Article  Google Scholar 

  35. Avgouropoulos G, Ioannides T, Matralis H (2005) Appl Catal B 56:87–93

    Article  CAS  Google Scholar 

  36. Landi G, Barbato PS, Di Benedetto A, Lisi L (2016) Appl Catal B 181:727–737

    Article  CAS  Google Scholar 

  37. Caputo T, Lisi L, Pirone R, Russo G (2007) Ind Eng Chem Res 46:6793–6800

    Article  CAS  Google Scholar 

  38. Chagas CA, de Souza EF, Manfro RL, Landi SM, Souza MMVM, Schmal M (2016) Appl Catal B 182:257–265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (21406174) and Schoolmaster Foundation of Xi’an Technological University (XAGDXJJ1308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Zhang, G. Improved Low-Temperature Activity of CuO–CeO2–ZrO2 Catalysts for Preferential Oxidation of CO in H2-Rich Streams. Catal Lett 146, 1449–1456 (2016). https://doi.org/10.1007/s10562-016-1774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1774-x

Keywords

Navigation