Catalysis Letters

, Volume 146, Issue 9, pp 1621–1633 | Cite as

Perspective on Catalytic Hydrodeoxygenation of Biomass Pyrolysis Oils: Essential Roles of Fe-Based Catalysts

  • Yongchun Hong
  • Alyssa Hensley
  • Jean-Sabin McEwen
  • Yong Wang


Catalytic fast pyrolysis is the most promising approach for biofuel production due to its simple process and versatility to handle lignocellulosic biomass feedstocks with varying and complex compositions. Compared with in situ catalytic fast pyrolysis, ex situ catalytic pyrolysis has the flexibility of optimizing the pyrolysis step and catalytic process individually to improve the quality of pyrolysis oil (stability, oxygen content, acid number, etc.) and to maximize the carbon efficiency in the conversion of biomass to pyrolysis oil. Hydrodeoxygenation is one of the key catalytic functions in ex situ catalytic fast pyrolysis. Recently, Fe-based catalysts have been reported to exhibit superior catalytic properties in the hydrodeoxygenation of model compounds in pyrolysis oil, which potentially makes the ex situ pyrolysis of biomass commercially viable due to the abundance and low cost of Fe. Here, we briefly summarize the recent progress on Fe-based catalysts for the hydrodeoxygenation of biomass, and provide perspectives on how to further improve Fe-based catalysts (activity and stability) for their potential applications in the emerging area of biomass conversion.

Graphical Abstract


Biofuel Hydrodeoxygenation Lignin Fe catalyst Bimetallic catalyst Pyrolysis oil 



Y. W. and Y. H. acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under award numbers DE-FG02-05ER15712. J.-S. M. and A. H.  acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under award number DE-SC0014560. A portion of the research was performed at Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL).


  1. 1.
    Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098CrossRefGoogle Scholar
  2. 2.
    Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556CrossRefGoogle Scholar
  3. 3.
    Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090CrossRefGoogle Scholar
  4. 4.
    Ma FR, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15CrossRefGoogle Scholar
  5. 5.
    Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10(3):248–268CrossRefGoogle Scholar
  6. 6.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRefGoogle Scholar
  7. 7.
    Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73(3):155–173CrossRefGoogle Scholar
  8. 8.
    McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83(1):55–63CrossRefGoogle Scholar
  9. 9.
    Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43(22):7594–7623CrossRefGoogle Scholar
  10. 10.
    Wang HM, Wang Y (2013) Biomass to bio-oil by liquefaction. In: Zhang B, Wang Y (eds) Biomass processing conversion and biorefinery. Nova Science Publishers, Inc, New York, pp 153–166Google Scholar
  11. 11.
    Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889CrossRefGoogle Scholar
  12. 12.
    Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. In: Sparks DL (ed) Advances in agronomy, vol 105. Academic Press, San Diego, pp 47–82Google Scholar
  13. 13.
    Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43(9):1812–1836CrossRefGoogle Scholar
  14. 14.
    Badger PC, Fransham P (2006) Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—a preliminary assessment. Biomass Bioenergy 30(4):321–325CrossRefGoogle Scholar
  15. 15.
    Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen 407(1–2):1–19CrossRefGoogle Scholar
  16. 16.
    Chen H, Wang JX, Shuai SJ, Chen WM (2008) Study of oxygenated biomass fuel blends on a diesel engine. Fuel 87(15–16):3462–3468CrossRefGoogle Scholar
  17. 17.
    Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598CrossRefGoogle Scholar
  18. 18.
    Adam J, Antonakou E, Lappas A, Stocker M, Nilsen MH, Bouzga A, Hustad JE, Oye G (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous Mesoporous Mater 96(1–3):93–101CrossRefGoogle Scholar
  19. 19.
    Ruddy DA, Schaidle JA, Ferrell JR, Wang J, Moens L, Hensley JE (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16(2):454–490CrossRefGoogle Scholar
  20. 20.
    Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A Gen 199(2):147–190CrossRefGoogle Scholar
  21. 21.
    Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21(3):1792–1815CrossRefGoogle Scholar
  22. 22.
    Vitolo S, Seggiani M, Frediani P, Ambrosini G, Politi L (1999) Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel 78(10):1147–1159CrossRefGoogle Scholar
  23. 23.
    French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91(1):25–32CrossRefGoogle Scholar
  24. 24.
    Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260CrossRefGoogle Scholar
  25. 25.
    Sun JM, Karim AM, Mei DH, Engelhard M, Bao XH, Wang Y (2015) New insights into reaction mechanisms of ethanol steam reforming on Co-ZrO2. Appl Catal B Environ 162:141–148CrossRefGoogle Scholar
  26. 26.
    Festel GW (2008) Biofuels—economic aspects. Chem Eng Technol 31(5):715–720CrossRefGoogle Scholar
  27. 27.
    Milne T, Agblevor F, Davis M, Deutch S, Johnson D, Bridgwater A, Boocock D (1997) Developments in thermochemical biomass conversion. Blackie Academic & Professional, London, p 409CrossRefGoogle Scholar
  28. 28.
    Centeno A, Laurent E, Delmon B (1995) Influence of the support of como sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. J Catal 154(2):288–298CrossRefGoogle Scholar
  29. 29.
    Ferrari M, Maggi R, Delmon B, Grange P (2001) Influences of the hydrogen sulfide partial pressure and of a nitrogen compound on the hydrodeoxygenation activity of a CoMo/carbon catalyst. J Catal 198(1):47–55CrossRefGoogle Scholar
  30. 30.
    Ramanathan S, Oyama ST (1995) New catalysts for hydroprocessing—transition-metal carbides and nitrides. J Phys Chem 99(44):16365–16372CrossRefGoogle Scholar
  31. 31.
    Dhandapani B, St Clair T, Oyama ST (1998) Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Appl Catal A Gen 168(2):219–228CrossRefGoogle Scholar
  32. 32.
    Oyama ST, Wang X, Lee YK, Chun WJ (2004) Active phase of Ni2P/SiO2 in hydroprocessing reactions. J Catal 221(2):263–273CrossRefGoogle Scholar
  33. 33.
    Foster AJ, Do PTM, Lobo RF (2012) The synergy of the support acid function and the metal function in the catalytic hydrodeoxygenation of m-cresol. Top Catal 55(3–4):118–128CrossRefGoogle Scholar
  34. 34.
    Do PTM, Foster AJ, Chen JG, Lobo RF (2012) Bimetallic effects in the hydrodeoxygenation of meta-cresol on gamma-Al2O3 supported Pt–Ni and Pt–Co catalysts. Green Chem 14(5):1388–1397CrossRefGoogle Scholar
  35. 35.
    Nimmanwudipong T, Aydin C, Lu J, Runnebaum RC, Brodwater KC, Browning ND, Block DE, Gates BC (2012) Selective hydrodeoxygenation of guaiacol catalyzed by platinum supported on magnesium oxide. Catal Lett 142(10):1190–1196CrossRefGoogle Scholar
  36. 36.
    Nimmanwudipong T, Runnebaum RC, Ebeler SE, Block DE, Gates BC (2012) Upgrading of lignin-derived compounds: reactions of eugenol catalyzed by HY zeolite and by Pt/gamma-Al2O3. Catal Lett 142(2):151–160CrossRefGoogle Scholar
  37. 37.
    Sun JM, Karim AM, Zhang H, Kovarik L, Li XHS, Hensley AJ, McEwen JS, Wang Y (2013) Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J Catal 306:47–57CrossRefGoogle Scholar
  38. 38.
    Olcese RN, Lardier G, Bettahar M, Ghanbaja J, Fontana S, Carre V, Aubriet F, Petitjean D, Dufour A (2013) Aromatic chemicals by iron-catalyzed hydrotreatment of lignin pyrolysis vapor. ChemSusChem 6(8):1490–1499CrossRefGoogle Scholar
  39. 39.
    Olcese RN, Bettahar M, Petitjean D, Malaman B, Giovanella F, Dufour A (2012) Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst. Appl Catal B Environ 115:63–73CrossRefGoogle Scholar
  40. 40.
    Olcese R, Bettahar MM, Malaman B, Ghanbaja J, Tibavizco L, Petitjean D, Dufour A (2013) Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Appl Catal B Environ. 129:528–538CrossRefGoogle Scholar
  41. 41.
    Olcese RN, Francois J, Bettahar MM, Petitjean D, Dufour A (2013) Hydrodeoxygenation of guaiacol, a surrogate of lignin pyrolysis vapors, over iron based catalysts: kinetics and modeling of the lignin to aromatics integrated process. Energy Fuels 27(2):975–984CrossRefGoogle Scholar
  42. 42.
    Dong W, Hafner J (1997) H2 dissociative adsorption on Pd (111). Phys Rev B 56(23):15396–15403CrossRefGoogle Scholar
  43. 43.
    Ledentu V, Dong W, Sautet P (1998) Ab initio study of the dissociative adsorption of H2 on the Pd (110) surface. Surf Sci 412–413:518–526CrossRefGoogle Scholar
  44. 44.
    Lischka M, Groß A (2002) Hydrogen adsorption on an open metal surface: H2/Pd(210). Phys Rev B 65(7):075420CrossRefGoogle Scholar
  45. 45.
    Lopez N, Lodziana Z, Illas F, Salmeron M (2004) When Langmuir is too simple: H2 dissociation on Pd (111) at high coverage. Phys Rev Lett 93(14):146103CrossRefGoogle Scholar
  46. 46.
    Nobuhara K, Kasai H, Diño WA, Nakanishi H (2004) H2 dissociative adsorption on Mg, Ti, Ni, Pd and La surfaces. Surf Sci 566–568:703–707CrossRefGoogle Scholar
  47. 47.
    Steen EV, Helden PV (2010) A DFT study of hydrogen dissociation on CO- and C-precovered Fe(100) surfaces. J Phys Chem C 114(13):5932–5940CrossRefGoogle Scholar
  48. 48.
    Sorescu DC (2005) First principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk. Catal Today 105(1):44–65CrossRefGoogle Scholar
  49. 49.
    Delmon B (1993) New technical challenges and recent advances in hydrotreatment catalysis—a critical updating review. Catal Lett 22(1–2):1–32CrossRefGoogle Scholar
  50. 50.
    Eijsbouts S (1997) On the flexibility of the active phase in hydrotreating catalysts. Appl Catal A Gen 158(1–2):53–92CrossRefGoogle Scholar
  51. 51.
    Riaz U, Curnow OJ, Curtis MD (1994) Desulfurization of organic sulfur-compounds mediated by a molybdenum/cobalt/sulfur cluster. J Am Chem Soc 116(10):4357–4363CrossRefGoogle Scholar
  52. 52.
    Paul JF, Cristol S, Payen E (2008) Computational studies of (mixed) sulfide hydrotreating catalysts. Catal Today 130(1):139–148CrossRefGoogle Scholar
  53. 53.
    Varakin AN, Nikul’shin PA, Pimerzin AA, Sal’nikov VA, Pimerzin AA (2013) Hydrogen spillover effect in the presence of CoS (x)/Al2O3 and bulk MoS2 in hydrodesulfurization, hydrodenitrogenation and hydrodeoxygenation. Russ J Appl Chem 86(5):718–726CrossRefGoogle Scholar
  54. 54.
    Elliott D, Neuenschwander G (1996) Liquid fuels by low-severity hydrotreating of biocrude. Dev Thermochem Biomass Convers 1(2):611–621Google Scholar
  55. 55.
    Elliott DC, Baker EG, Piskorz J, Scott DS, Solantausta Y (1988) Production of liquid-hydrocarbon fuels from peat. Energy Fuels 2(2):234–235CrossRefGoogle Scholar
  56. 56.
    Elliott DC, Beckman D, Bridgwater AV, Diebold JP, Gevert SB, Solantausta Y (1991) Developments in direct thermochemical liquefaction of biomass—1983–1990. Energy Fuels 5(3):399–410CrossRefGoogle Scholar
  57. 57.
    Jongerius AL, Jastrzebski R, Bruijnincx PCA, Weckhuysen BM (2012) CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: an extended reaction network for the conversion of monomeric and dimeric substrates. J Catal 285(1):315–323CrossRefGoogle Scholar
  58. 58.
    Badawi M, Paul JF, Cristol S, Payen E, Romero Y, Richard F, Brunet S, Lambert D, Portier X, Popov A, Kondratieva E, Goupil JM, El Fallah J, Gilson JP, Mariey L, Travert A, Mauge F (2011) Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: a combined experimental and DFT study. J Catal 282(1):155–164CrossRefGoogle Scholar
  59. 59.
    Dufresne P (2007) Hydroprocessing catalysts regeneration and recycling. Appl Catal A Gen 322:67–75CrossRefGoogle Scholar
  60. 60.
    Li Y, Guo W, Zhu H, Zhao L, Li M, Li S, Fu D, Lu X, Shan H (2012) Initial hydrogenations of pyridine on MoP(001): a density functional study. Langmuir 28(6):3129–3137CrossRefGoogle Scholar
  61. 61.
    Bui P, Cecilia JA, Oyama ST, Takagaki A, Infantes-Molina A, Zhao HY, Li D, Rodriguez-Castellon E, Lopez AJ (2012) Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. J Catal 294:184–198CrossRefGoogle Scholar
  62. 62.
    Ren H, Yu W, Salciccioli M, Chen Y, Huang Y, Xiong K, Vlachos DG, Chen JG (2013) Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts. ChemSusChem 6(5):798–801CrossRefGoogle Scholar
  63. 63.
    Ren H, Chen Y, Huang YL, Deng WH, Vlachos DG, Chen JGG (2014) Tungsten carbides as selective deoxygenation catalysts: experimental and computational studies of converting C3 oxygenates to propene. Green Chem 16(2):761–769CrossRefGoogle Scholar
  64. 64.
    Zhao HY, Li D, Bui P, Oyama ST (2011) Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A Gen 391(1–2):305–310CrossRefGoogle Scholar
  65. 65.
    Bowker RH, Smith MC, Pease ML, Slenkamp KM, Kovarik L, Bussell ME (2011) Synthesis and hydrodeoxygenation properties of ruthenium phosphide catalysts. ACS Catal 1(8):917–922CrossRefGoogle Scholar
  66. 66.
    Wu SK, Lai PC, Lin YC, Wan HP, Lee HT, Chang YH (2013) Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts. ACS Sustain Chem Eng 1(3):349–358CrossRefGoogle Scholar
  67. 67.
    Li KL, Wang RJ, Chen JX (2011) Hydrodeoxygenation of Anisole over Silica-Supported Ni2P, MoP, and NiMoP Catalysts. Energy Fuels 25(3):854–863CrossRefGoogle Scholar
  68. 68.
    Whiffen VML, Smith KJ (2012) A comparative study of 4-methylphenol hydrodeoxygenation over high surface area MoP and Ni2P. Top Catal 55(14–15):981–990CrossRefGoogle Scholar
  69. 69.
    Christmann K (1988) Interaction of hydrogen with solid-surfaces. Surf Sci Rep 9(1–3):1–163CrossRefGoogle Scholar
  70. 70.
    Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48(23):10324–10334CrossRefGoogle Scholar
  71. 71.
    Nie L, de Souza PM, Noronha FB, An W, Sooknoi T, Resasco DE (2014) Selective conversion of m-cresol to toluene over bimetallic Ni–Fe catalysts. J Mol Catal A Chem 388:47–55CrossRefGoogle Scholar
  72. 72.
    Temkin M, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim URSS 12(3):327–356Google Scholar
  73. 73.
    Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Norskov JK (2005) Ammonia synthesis from first-principles calculations. Science 307(5709):555–558CrossRefGoogle Scholar
  74. 74.
    Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) Selectivity control and catalyst design in the Fischer-Tropsch synthesis—sites, pellets, and reactors. Adv Catal 39(39):221–302Google Scholar
  75. 75.
    Van Der Laan GP, Beenackers AACM (1999) Kinetics and selectivity of the fischer-tropsch synthesis: a literature review. Catal Rev 41(3–4):255–318CrossRefGoogle Scholar
  76. 76.
    Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344(6184):616–619CrossRefGoogle Scholar
  77. 77.
    Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447CrossRefGoogle Scholar
  78. 78.
    Brandenberger S, Krocher O, Tissler A, Althoff R (2008) The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal Rev Sci Eng 50(4):492–531CrossRefGoogle Scholar
  79. 79.
    Gao F, Kollár M, Kukkadapu RK, Washton NM, Wang Y, Szanyi J, Peden CHF (2015) Fe/SSZ-13 as an NH3-SCR catalyst: a reaction kinetics and FTIR/Mössbauer spectroscopic study. Appl Catal B Environ 164:407–419CrossRefGoogle Scholar
  80. 80.
    Mcdonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120(3–4):223–253CrossRefGoogle Scholar
  81. 81.
    Emmett PH, Skau N (1943) The catalytic hydrogenation of benzene over metal catalysts. J Am Chem Soc 65:1029–1035CrossRefGoogle Scholar
  82. 82.
    Phillips MJ, Emmett PH (1986) Iron as a catalyst for the hydrogenation of benzene. J Catal 101(2):268–272CrossRefGoogle Scholar
  83. 83.
    Bartholomew CH, Bowman RM (1985) Sulfur poisoning of cobalt and iron Fischer–Tropsch catalysts. Appl Catal 15(1):59–67CrossRefGoogle Scholar
  84. 84.
    Holmes RD, O’Neill HSC, Arculus RJ (1986) Standard Gibbs free energy of formation for Cu2O, NiO, CoO, and FexO: high resolution electrochemical measurements using zirconia solid electrolytes from 900–1400 K. Geochim Cosmochim Acta 50(11):2439–2452CrossRefGoogle Scholar
  85. 85.
    Bykova MV, Ermakov DY, Khromova SA, Smirnov AA, Lebedev MY, Yakovlev VA (2014) Stabilized Ni-based catalysts for bio-oil hydrotreatment: reactivity studies using guaiacol. Catal Today 220:21–31CrossRefGoogle Scholar
  86. 86.
    Zhang XH, Wang TJ, Ma LL, Zhang Q, Yu YX, Liu QY (2013) Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2–SiO2 for guaiacol hydrodeoxygenation. Catal Commun 33:15–19CrossRefGoogle Scholar
  87. 87.
    Zhang XH, Wang TJ, Ma LL, Zhang Q, Huang XM, Yu YX (2013) Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts. Appl Energy 112:533–538CrossRefGoogle Scholar
  88. 88.
    Chang J, Danuthai T, Dewiyanti S, Wang C, Borgna A (2013) Hydrodeoxygenation of guaiacol over carbon-supported metal catalysts. Chemcatchem 5(10):3041–3049CrossRefGoogle Scholar
  89. 89.
    Mochizuki T, Chen SY, Toba M, Yoshimura Y (2014) Deoxygenation of guaiacol and woody tar over reduced catalysts. Appl Catal B Environ 146:237–243CrossRefGoogle Scholar
  90. 90.
    Lee CR, Yoon JS, Suh YW, Choi JW, Ha JM, Suh DJ, Park YK (2012) Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol. Catal Commun 17:54–58CrossRefGoogle Scholar
  91. 91.
    Rau H (1972) Thermodynamics of the reduction of iron oxide powders with hydrogen. J Chem Thermodyn 4(1):57–64CrossRefGoogle Scholar
  92. 92.
    Hong Y, Zhang H, Sun J, Ayman KM, Hensley AJR, Gu M, Engelhard MH, McEwen J-S, Wang Y (2014) Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol. ACS Catal 4(10):3335–3345CrossRefGoogle Scholar
  93. 93.
    Kandel K, Anderegg JW, Nelson NC, Chaudhary U, Slowing II (2014) Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. J Catal 314:142–148CrossRefGoogle Scholar
  94. 94.
    Hensley AJ, Wang Y, McEwen JS (2016) Adsorption of guaiacol on Fe (110) and Pd (111) from first principles. Surf Sci 648:227–235 CrossRefGoogle Scholar
  95. 95.
    Hensley AJR, Wang Y, McEwen J-S (2014) Adsorption of phenol on Fe (110) and Pd (111) from first principles. Surf Sci 630:244–253CrossRefGoogle Scholar
  96. 96.
    Hensley AJ, Wang Y, McEwen J-S (2015) Phenol deoxygenation mechanisms on Fe (110) and Pd (111). ACS Catal 5(2):523–536CrossRefGoogle Scholar
  97. 97.
    Zhu XL, Lobban LL, Mallinson RG, Resasco DE (2011) Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J Catal 281(1):21–29CrossRefGoogle Scholar
  98. 98.
    Zhao C, Camaioni DM, Lercher JA (2012) Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes. J Catal 288:92–103CrossRefGoogle Scholar
  99. 99.
    Faba L, Diaz E, Ordonez S (2014) One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis. ChemSusChem 7(10):2816–2820CrossRefGoogle Scholar
  100. 100.
    Gonzalez-Borja MA, Resasco DE (2011) Anisole and guaiacol hydrodeoxygenation over monolithic Pt–Sn catalysts. Energy Fuels 25(9):4155–4162CrossRefGoogle Scholar
  101. 101.
    Lin YC, Li CL, Wan HP, Lee HT, Liu CF (2011) Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy Fuels 25(3):890–896CrossRefGoogle Scholar
  102. 102.
    Serna P, Concepcion P, Corma A (2009) Design of highly active and chemoselective bimetallic gold-platinum hydrogenation catalysts through kinetic and isotopic studies. J Catal 265(1):19–25CrossRefGoogle Scholar
  103. 103.
    Boronat M, Corma A (2010) Origin of the different activity and selectivity toward hydrogenation of single metal Au and Pt on TiO2 and bimetallic Au–Pt/TiO2 catalysts. Langmuir 26(21):16607–16614CrossRefGoogle Scholar
  104. 104.
    Hong YC, Sun KQ, Zhang GR, Zhong RY, Xu BQ (2011) Fully dispersed Pt entities on nano-Au dramatically enhance the activity of gold for chemoselective hydrogenation catalysis. Chem Commun (Camb) 47(4):1300–1302CrossRefGoogle Scholar
  105. 105.
    Sun KQ, Hong YC, Zhang GR, Xu BQ (2011) Synergy between Pt and Au in Pt–on–Au nanostructures for chemoselective hydrogenation catalysis. ACS Catal 1(10):1336–1346CrossRefGoogle Scholar
  106. 106.
    Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE, Tierney HL, Flytzani-Stephanopoulos M, Sykes ECH (2012) Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335(6073):1209–1212CrossRefGoogle Scholar
  107. 107.
    Christmann K (1988) Interaction of hydrogen with solid surfaces. Surf Sci Rep 9(1–3):1–163CrossRefGoogle Scholar
  108. 108.
    Hensley AJ, Schneider S, Wang Y, McEwen JS (2015) Adsorption of aromatics on the (111) surface of PtM and PtM3 (M=Fe, Ni) alloys. RSC Adv 5:85705–85719CrossRefGoogle Scholar
  109. 109.
    Hensley AJ, Zhang R, Wang Y, McEwen J-S (2013) Tailoring the adsorption of benzene on PdFe surfaces: a density functional theory study. J Phys Chem C 117(46):24317–24328CrossRefGoogle Scholar
  110. 110.
    McEwen J-S, Gaspard P, de Bocarme TV, Kruse N (2009) Nanometric chemical clocks. Proc Natl Acad Sci USA 106(9):3006–3010CrossRefGoogle Scholar
  111. 111.
    McEwen J-S, Gaspard P, de Bocarme TV, Kruse N (2009) Oscillations and bistability in the catalytic formation of water on rhodium in high electric fields. J Phys Chem C 113(39):17045–17058CrossRefGoogle Scholar
  112. 112.
    McEwen J-S, Gaspard P, De Bocarmé T, Kruse N (2010) Electric field induced oscillations in the catalytic water production on rhodium: a theoretical analysis. Surf Sci 604(17–18):1353–1368CrossRefGoogle Scholar
  113. 113.
    Farkas A, Hess F, Over H (2011) Experiment-based kinetic Monte Carlo simulations: CO oxidation over RuO2 (110). J Phys Chem C 116:581CrossRefGoogle Scholar
  114. 114.
    Grosfils P, Gaspard P, Visart de Bocarmé T (2015) The role of fluctuations in bistability and oscillations during the H2 + O2 reaction on nanosized rhodium crystals. J Chem Phys 143:064705CrossRefGoogle Scholar
  115. 115.
    Stamatakis M, Vlachos DG (2012) Unraveling the complexity of catalytic reactions via kinetic Monte Carlo simulation: current status and frontiers. ACS Catal 2:2648CrossRefGoogle Scholar
  116. 116.
    McEwen JS, Payne SH, Stampfl C (2002) Phase diagram of O/Ru(0001) from first principles. Chem Phys Lett 361(3–4):317–320CrossRefGoogle Scholar
  117. 117.
    McEwen J-S, Eichler A (2007) Phase diagram and adsorption-desorption kinetics of CO on Ru(0001) from first principles. J Chem Phys 126(9):094701CrossRefGoogle Scholar
  118. 118.
    Liu D, Evans J (2010) Interactions between oxygen atoms on Pt(100): implications for ordering during chemisorption and catalysis. ChemPhysChem 11(10):2174–2181CrossRefGoogle Scholar
  119. 119.
    Schmidt DJ, Chen W, Wolverton C, Schneider WF (2012) Performance of cluster expansions of coverage-dependent adsorption of atomic oxygen on Pt (111). J Chem Theory Comput 8:264CrossRefGoogle Scholar
  120. 120.
    Liu D-J, Evans JW (2013) Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: kinetics and multiscale spatial behavior for CO-oxidation on metal (100) surfaces. Prog Surf Sci 88:393CrossRefGoogle Scholar
  121. 121.
    Stampfl C, Kreuzer HJ, Payne SH, Pfnur H, Scheffler M (1999) First-principles theory of surface thermodynamics and kinetics. Phys Rev Lett 83(15):2993–2996CrossRefGoogle Scholar
  122. 122.
    Zhdanov VP, Kasemo B (2000) Oscillations and chaos in catalytic reactions on the nm scale. Phys Rev E 61(3):R2184–R2187CrossRefGoogle Scholar
  123. 123.
    Zhdanov VP, Kasemo B (2000) Simulations of the reaction kinetics on nanometer supported catalyst particles. Surf Sci Rep 39(2–4):29–104Google Scholar
  124. 124.
    Wellendorff J, Silbaugh TL, Garcia-Pintos D, Nørskov JK, Bligaard T, Studt F, Campbell CT (2015) A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf Sci 640:36–44CrossRefGoogle Scholar
  125. 125.
    Lukas S, Vollmer S, Witte G, Wöll C (2001) Adsorption of acenes on flat and vicinal Cu (111) surfaces: step induced formation of lateral order. J Chem Phys 114:10123CrossRefGoogle Scholar
  126. 126.
    Xu C, Tsai Y-L, Koel BE (1994) Adsorption of cyclohexane and benzene on ordered Sn/Pt (111) surface alloys. J Phys Chem 98:585–593CrossRefGoogle Scholar
  127. 127.
    Steinrück H-P, Huber W, Pache T, Menzel D (1989) The adsorption of benzene mono- and multilayers on Ni (111) studied by TPD and LEED. Surf Sci 218:292–316CrossRefGoogle Scholar
  128. 128.
    Camarillo-Cisneros J, Liu W, Tkatchenko A (2015) Steps or terraces? dynamics of aromatic hydrocarbons adsorbed at vicinal metal surfaces. Phys Rev Lett 115:086101CrossRefGoogle Scholar
  129. 129.
    Yoon Y, Rousseau R, Weber RS, Mei D, Lercher JA (2014) first-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. J Am Chem Soc 136:10287CrossRefGoogle Scholar
  130. 130.
    Nelson RC, Baek B, Ruiz P, Goundie B, Brooks A, Wheeler MC, Frederick BG, Grabow LC, Austin RN (2015) Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS Catalysis 5:6509–6523CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yongchun Hong
    • 1
    • 2
  • Alyssa Hensley
    • 1
  • Jean-Sabin McEwen
    • 1
    • 3
    • 4
  • Yong Wang
    • 1
    • 2
  1. 1.The Gene & Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA
  2. 2.Institute for Integrated CatalysisPacific Northwest National LaboratoryRichlandUSA
  3. 3.Department of Physics and AstronomyWashington State UniversityPullmanUSA
  4. 4.Department of ChemistryWashington State UniversityPullmanUSA

Personalised recommendations