Skip to main content

Advertisement

Log in

Low Temperature Catalytic Water Gas Shift in an Electric Field

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic water gas shift for hydrogen production in the temperature range of 423–873 K, was examined imposing an electric field to the catalyst bed. Reaction trends were investigated based on thermodynamic equilibrium and chemical kinetic law. Pt/La–ZrO2 was chosen as an active catalyst through our screening tests, and the effect of the electric field on the catalytic activity was investigated by changing reaction temperatures and applied electric currents. Although the reaction was ruled by thermodynamic equilibrium at high temperatures, drastic promotion of the reaction by applying the electric field was observed at low temperatures in a kinetic region. Drastic decrease of apparent activation energy for WGS was observed by imposing the electric field to the catalyst bed. Various isotopic transient tests revealed that the reaction mechanism changed by the application of electric field, and redox mechanism using surface lattice oxygen played an important role in case of the catalytic WGS in the electric field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oshima K, Shinagawa T, Sekine Y (2013) J Jpn Petrol Inst 56(1):11–21

    Article  CAS  Google Scholar 

  2. Stoukides M, Vayenas CG (1980) J Catal 64:18–28

    Article  CAS  Google Scholar 

  3. Sekine Y, Haraguchi M, Matsukata M, Tomioka M, Kikuchi E (2010) J Phys Chem A 114:3824–3833

    Article  CAS  Google Scholar 

  4. Vayenas CG, Bebelis S, Yentekakis IV, Tsiakaras P, Karasali H (1990) Platin Met Rev 34:122–130

    CAS  Google Scholar 

  5. Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625–627

    Article  CAS  Google Scholar 

  6. Vayenas CG, Bebelis S, Neophytides S (1988) J Phys Chem 92:5083–5085

    Article  CAS  Google Scholar 

  7. Yentekakis IV, Vayenas CG (1988) J Catal 111:170–188

    Article  CAS  Google Scholar 

  8. Vayenas CG, Bebelis S, Neophytides S, Yentekukis IV (1989) Appl Phys 49:95–103

    Article  Google Scholar 

  9. Tsiakaras P, Vayenas CG (1993) J Catal 140:53–70

    Article  CAS  Google Scholar 

  10. Yentekakis IV, Jiang Y, Neapfytides S, Bebelis S, Vayenas CG (1995) Solid State Ion 1:491–498

    CAS  Google Scholar 

  11. Oshima K, Shinagawa T, Haraguchi M, Sekine Y (2013) Int J Hydrog Energy 38:3003–3011

    Article  CAS  Google Scholar 

  12. Oshima K, Tanaka K, Yabe T, Kikuchi E, Sekine Y (2013) Fuel 107:879–881

    Article  CAS  Google Scholar 

  13. Sekine Y, Haraguchi M, Matsukata M, Kikuchi E (2011) Catal Today 171:116–125

    Article  CAS  Google Scholar 

  14. Oshima K, Shinagawa T, Nogami Y, Manabe R, Ogo S, Sekine Y (2014) Catal Today 232:27–32

    Article  CAS  Google Scholar 

  15. Graf PO, de Vlieger DJM, Mojet BL, Lefferts L (2009) J Catal 262:181–187

    Article  CAS  Google Scholar 

  16. Azzam KG, Babich IV, Seshan K, Lefferts L (2007) J Catal 251:153–162

    Article  CAS  Google Scholar 

  17. Azzam KG, Babich IV, Seshan K, Lefferts L (2007) J Catal 251:163–171

    Article  CAS  Google Scholar 

  18. Azzam KG, Babich IV, Seshan K, Lefferts L (2008) Appl Catal A 338:66–71

    Article  CAS  Google Scholar 

  19. Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107–114

    Article  CAS  Google Scholar 

  20. Hilaire S, Wang X, Luo T, Gorte RJ, Wagner J (2001) Appl Catal A 215:271–278

    Article  CAS  Google Scholar 

  21. Grenoble DC, Estadt MM (1981) J Catal 67:90–102

    Article  CAS  Google Scholar 

  22. Kono E, Tamura S, Yamamuro K, Ogo S, Sekine Y (2015) Appl Catal A 489:247–254

    Article  CAS  Google Scholar 

  23. Watanabe R, Sakamoto Y, Yamamuro K, Tamura S, Kikuchi E, Sekine Y (2013) Appl Catal A 457:1–11

    Article  CAS  Google Scholar 

  24. Yamamuro K, Tamura S, Watanabe R, Sekine Y (2013) Catal Lett 143(4):339–344

    Article  CAS  Google Scholar 

  25. Sekine Y, Chihara T, Watanabe R, Sakamoto Y, Matsukata M, Kikuchi E (2010) Catal Lett 140(3–4):184–188

    Article  CAS  Google Scholar 

  26. Watanabe R, Sekine Y, Takamatsu H, Sakamoto Y, Aramaki S, Matsukata M, Kikuchi E (2010) Top Catal 53(7):621–628

    Article  CAS  Google Scholar 

  27. Sekine Y, Takamatsu H, Aramaki S, Ichishima K, Takada M, Matsukata M, Kikuchi E (2009) Appl Catal A 352:214–222

    Article  CAS  Google Scholar 

  28. Pigos JM, Brooks CJ, Jacobs G, Davis BH (2007) Appl Catal A 328:14–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Sekine.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekine, Y., Yamagishi, K., Nogami, Y. et al. Low Temperature Catalytic Water Gas Shift in an Electric Field. Catal Lett 146, 1423–1428 (2016). https://doi.org/10.1007/s10562-016-1765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1765-y

Keywords

Navigation