Advertisement

Catalysis Letters

, Volume 146, Issue 8, pp 1429–1434 | Cite as

Enantioselective Morita–Baylis–Hillman Reaction of Acrylates with Nitrobenzaldehydes Promoted by the Bifunctional Ferrocene-Based Phosphinothiourea Organocatalysts

  • Chuang Li
  • Peng-Fei Ma
  • Yang Lei
  • Hui Chen
  • Shao-Yu Guan
  • Ru Jiang
  • Wei-Ping Chen
Article

Abstract

A series of ferrocene-based bifunctional phosphinothiourea organocatalysts were synthesized and applied to the enantioselective Morita–Baylis–Hillman reaction of acrylates with nitrobenzaldehydes, giving the desired products in up to 99.7 % ee. The strong electron-withdrawing effect of nitro group and hydrogen bonding interactions between the thiourea moiety of catalyst and aldehyde might be crucial during the enantio-controlling process.

Graphical Abstract

Keywords

Acrylates Ferrocene-based MBH reaction Nitrobenzaldehyde Phosphinothiourea 

Notes

Acknowledgments

We thank the National Natural Science Foundation of China (21472240, 21272271) for financial support.

Supplementary material

10562_2016_1759_MOESM1_ESM.doc (2.8 mb)
Supplementary material 1 (DOC 2868 kb)

References

  1. 1.
    Wang S, Han X, Zhong F, Wang Y, Lu Y (2011) Synlett 2011:2766–2778CrossRefGoogle Scholar
  2. 2.
    Zhao Q-Y, Lian Z, Wei Y, Shi M (2012) Chem Commun 48:1724–1732CrossRefGoogle Scholar
  3. 3.
    Wei Y, Shi M (2010) Acc Chem Res 43:1005–1018CrossRefGoogle Scholar
  4. 4.
    Xu L-W (2013) ChemCatChem 5:2775–2784CrossRefGoogle Scholar
  5. 5.
    Fang Y-Q, Jacobsen EN (2008) J Am Chem Soc 130:5660–5661CrossRefGoogle Scholar
  6. 6.
    Takizawa S, Kiriyama K, Ieki K, Sasai H (2011) Chem Commun 47:9227–9229CrossRefGoogle Scholar
  7. 7.
    Yang Y-L, Pei C-K, Shi M (2011) Org Biomol Chem 9:3349–3358CrossRefGoogle Scholar
  8. 8.
    Han X, Zhong F, Wang Y, Lu Y (2012) Angew Chem Int Ed 51:767–770CrossRefGoogle Scholar
  9. 9.
    Zhong F, Dou X, Han X, Yao W, Zhu Q, Meng Y, Lu Y (2013) Angew Chem Int Ed 52:943–947CrossRefGoogle Scholar
  10. 10.
    Fang Y-Q, Tadross PM, Jacobsen EN (2014) J Am Chem Soc 136:17966–17968CrossRefGoogle Scholar
  11. 11.
    Zhao X, Gong J-J, Yuan K, Sha F, Wu X-Y (2015) Tetrahedron Lett 56:2526–2528CrossRefGoogle Scholar
  12. 12.
    Dong Z, Yan C, Gao Y-Z, Dong C-E, Qiu G-F, Zhou H-B (2015) Adv Synth Catal 357:2132–2142CrossRefGoogle Scholar
  13. 13.
    Gergelitsová I, Tauchman J, Císařová I, Veselý J (2015) Synlett 26:2690–2696CrossRefGoogle Scholar
  14. 14.
    Hu H-W, Yu S-X, Zhu L-L, Zhou L-X, Zhong W-H (2016) Org Biomol Chem 14:752–760CrossRefGoogle Scholar
  15. 15.
    Deng H-P, Wang D, Wei Y, Shi M (2012) Beilstein J Org Chem 8:1098–1104CrossRefGoogle Scholar
  16. 16.
    Zhao Q-Y, Han X-Y, Wei Y, Shi M, Lu YX (2012) Chem Commun 48:970–972CrossRefGoogle Scholar
  17. 17.
    Han X-Y, Wang Y-Q, Zhong F-R, Lu Y-X (2011) J Am Chem Soc 133:1726–1729CrossRefGoogle Scholar
  18. 18.
    Zhong F-R, Chen G-Y, Han X-Y, Yao W-J, Lu Y-X (2012) Org Lett 14:3764–3767CrossRefGoogle Scholar
  19. 19.
    Hu F-L, Wei Y, Shi M (2012) Tetrahedron 68:7911–7919CrossRefGoogle Scholar
  20. 20.
    Chen W, Mbafor W, Roberts SM, Whittall J (2006) J Am Chem Soc 128:3922–3923CrossRefGoogle Scholar
  21. 21.
    Chen W, Roberts SM, Whittall J, Steiner A (2006) Chem Commun 2006:2916–2918CrossRefGoogle Scholar
  22. 22.
    Chen W, McCormack PJ, Mohammed K, Mbafor W, Roberts SM, Whittall J (2007) Angew Chem Int Ed 46:4141–4144CrossRefGoogle Scholar
  23. 23.
    Chen W, Spindler F, Pugin B, Nettekoven U (2013) Angew Chem Int Ed 52:8652–8656CrossRefGoogle Scholar
  24. 24.
    Wang Q, Liu X, Liu X, Li B, Nie H, Zhang S, Chen W (2014) Chem Commun 50:978–980CrossRefGoogle Scholar
  25. 25.
    Zhang X, Ma P, Zhang D, Lei Y, Zhang S, Jiang R, Chen W (2014) Org Biomol Chem 12:2423–2426CrossRefGoogle Scholar
  26. 26.
    Yao W, Chen M, Liu X, Jiang R, Zhang S, Chen W (2014) Catal Sci Technol 4:1726–1729CrossRefGoogle Scholar
  27. 27.
    Nie H, Yao L, Li B, Zhang S, Chen W (2014) Organometallics 33:2109–2114CrossRefGoogle Scholar
  28. 28.
    Ma J, Li C, Zhang D, Lei Y, Li M, Jiang R, Chen W (2015) RSC Adv 5:35888–35892CrossRefGoogle Scholar
  29. 29.
    Yao L, Wen J, Liu S, Tan R, Wood NM, Chen W, Zhang S, Zhang X (2016) Chem Commun 52:2273–2276CrossRefGoogle Scholar
  30. 30.
    Basavaiah D, Rao AJ, Satyanarayana T (2003) Chem Rev 103:811–891CrossRefGoogle Scholar
  31. 31.
    Basavaiah D, Reddy BS, Badsara SS (2010) Chem Rev 110:5447–5674CrossRefGoogle Scholar
  32. 32.
    Basavaiah D, Veeraraghavaiah G (2012) Chem Soc Rev 41:68–78CrossRefGoogle Scholar
  33. 33.
    Wei Y, Shi M (2013) Chem Rev 113:6659–6690CrossRefGoogle Scholar
  34. 34.
    Bharadwaj KC (2015) RSC Adv 5:75923–75946CrossRefGoogle Scholar
  35. 35.
    Xie P, Huang Y (2015) Org Biomol Chem 13:8578–8595CrossRefGoogle Scholar
  36. 36.
    Shi Y-L, Shi M (2007) Eur J Org Chem 2007:2905–2916CrossRefGoogle Scholar
  37. 37.
    Declerck V, Martinez J, Lamaty F (2009) Chem Rev 109:1–48CrossRefGoogle Scholar
  38. 38.
    Wei YW, Shi M (2010) Chin Sci Bull 55:1699–1711CrossRefGoogle Scholar
  39. 39.
    He Q, Zhan G, Du W, Chen Y (2016) Beilstein J Org Chem 12:295–300CrossRefGoogle Scholar
  40. 40.
    Yuan K, Zhang L, Hu Y-J, Wu X-Y (2008) Tetrahedron Lett 49:6262–6264CrossRefGoogle Scholar
  41. 41.
    Gong J-J, Yuan K, Song H-L, Wu X-Y (2010) Tetrahedron 66:2439–2443CrossRefGoogle Scholar
  42. 42.
    Wang C-C, Wu X-Y (2011) Tetrahedron 67:2974–2978CrossRefGoogle Scholar
  43. 43.
    Hayase T, Shibata T, Soai K, Wakatsuki Y (1998) Chem Commun 1998:1271–1272CrossRefGoogle Scholar
  44. 44.
    Iwabuchi Y, Nakatani M, Yokoyama N, Hatakeyama S (1999) J Am Chem Soc 121:10219–10220CrossRefGoogle Scholar
  45. 45.
    Nakano A, Ushiyama M, Iwabuchi Y, Hatakeyama S (2005) Adv Synth Catal 347:1790–1796CrossRefGoogle Scholar
  46. 46.
    Nakano A, Kawahara S, Akamatsu S, Morokuma K, Nakatani M, Iwabuchi Y, Takahashi K, Ishihara J, Hatakeyama S (2006) Tetrahedron 62:381–389CrossRefGoogle Scholar
  47. 47.
    Martelli G, Orena M, Rinaldi S (2012) Eur J Org Chem 2012:4140–4152CrossRefGoogle Scholar
  48. 48.
    Shi M, Jiang J-K (2002) Tetrahedron Asymmetry 13:1941–1947CrossRefGoogle Scholar
  49. 49.
    Pereira SI, Adrio J, Silva AMS, Carretero JC (2005) J Org Chem 70:10175–10177CrossRefGoogle Scholar
  50. 50.
    Gong J-J, Yuan K, Wu X-Y (2009) Tetrahedron Asymmetry 20:2117–2120CrossRefGoogle Scholar
  51. 51.
    Yuan K, Song H-L, Hu Y-J, Wu X-Y (2009) Tetrahedron 65:8185–8190CrossRefGoogle Scholar
  52. 52.
    Yang W-H, Sha F, Zhang X, Yuan K, Wu X-Y (2012) Chin J Chem 30:2652–2656Google Scholar
  53. 53.
    Han X, Wang Y, Zhong F, Lu Y (2011) Org Biomol Chem 9:6734–6740CrossRefGoogle Scholar
  54. 54.
    Chen W, Mbafor W, Roberts SM, Whittall J (2006) Tetrahedron Asymmetry 17:1161–1164CrossRefGoogle Scholar
  55. 55.
    Ma P, Zhang X, Ma J, Chen H, Jiang R (2013) Acta Cryst E69:m242–m243Google Scholar
  56. 56.
    After the MBH reaction of HFIPA with aromatic aldehyde, the adduct was derivatized by stirred with ethanol (5 mL) and trimethylamine (0.5 mL) for 30 min at 25°C, then the esterified product underwent chiral HPLC determination (for details see SI)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Medicinal Chemistry, School of PharmacyFourth Military Medical UniversityXi’anChina
  2. 2.Department of PharmacyThe 60th Central Hospital of the PLADaliChina

Personalised recommendations