Advertisement

Catalysis Letters

, Volume 146, Issue 7, pp 1291–1299 | Cite as

Structure Sensitivity in Catalytic Hydrogenation of Galactose and Arabinose over Ru/C Catalysts

  • Irina L. Simakova
  • Yulia S. Demidova
  • Elena V. Murzina
  • Atte Aho
  • Dmitry Yu. MurzinEmail author
Article

Abstract

Structure sensitivity in hydrogenation of arabinose and galactose was studied over supported ruthenium catalysts with the cluster size ranging from 1 to 8 nm. Ruthenium on carbon supports with different ruthenium particle sizes were prepared by incipient wetness impregnation and colloidal method. Catalytic activity was seen to have almost no dependence on the substrate being, however, sensitive to the cluster size. The highest turnover frequency (TOF) was obtained with a catalyst having average ruthenium particle size of ca. 3 nm. A mathematic model incorporating cluster size dependent rate constants was used to quantitatively describe experimental data on TOF.

Graphical Abstract

Keywords

Arabinose Galactose Hydrogenation Ruthenium on carbon Structure sensitivity 

Notes

Acknowledgments

The SusFuelCat project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No 310490 (www.susfuelcat.eu/). The work is a part of Johan Gadolin Process Chemistry Centre (PCC), a centre of excellence financed by Åbo Akademi University.

References

  1. 1.
    Murzin DYu, Duque A, Arve K, Sifontes Herrera V, Aho A, Eränen K, Salmi T (2016) In RSC biomass sugars for non-fuel applications (ed. D.Yu. Murzin, O. Simakova). RSC Green Chem 44:89–133Google Scholar
  2. 2.
    van Gorp K, Boerman E, Cavenaghi CV, Berben PH (1999) Catal Today 52:349–361CrossRefGoogle Scholar
  3. 3.
    Mikkola J-P, Vainio H, Salmi T, Sjöholm R, Ollonqvist T, Väyrynen J (2000) Appl Catal A 196:143–155CrossRefGoogle Scholar
  4. 4.
    Hoffer BW, Crezee E, Devred F, Mooijman PRM, Sloof WG, Kooyman PJ, van Langeveld AD, Kapteijn F, Moulijn JA (2003) Appl Catal A 253:437–452CrossRefGoogle Scholar
  5. 5.
    Crezee E, Hoffer BW, Berger RJ, Makkee M, Kapteijn F, Moulijn JA (2003) Appl Catal A 251:1–17CrossRefGoogle Scholar
  6. 6.
    Besson M, Gallezot P, Perrard A, Pinel C (2005) Catal Today 102–103:160–165CrossRefGoogle Scholar
  7. 7.
    Sifontes Herrera V, Rivero D, Wärnå JP, Mikkola J-P, Salmi T (2010) Top Catal 53:1278–1281CrossRefGoogle Scholar
  8. 8.
    Kilpiö T, Aho A, Murzin D, Salmi T (2013) Ind Eng Chem Res 52:7690–7703CrossRefGoogle Scholar
  9. 9.
    Lazaridis PA, Karakoulia S, Delimitis A, Coman SM, Parvulescu VI, Triantafyllidis KS (2015) Catal Today 257:281–290CrossRefGoogle Scholar
  10. 10.
    Aho A, Roggan S, Simakova O, Salmi T, Murzin DYu (2015) Catal Today 241:195CrossRefGoogle Scholar
  11. 11.
    Santen RA (2009) Acc Chem Res 41:57–66CrossRefGoogle Scholar
  12. 12.
    Murzin DYu, Parmon VN (2011) RSC Catal Spec Period Rep 23:179–203Google Scholar
  13. 13.
    Zanella R, Louis C, Giorgio S, Touroude R (2004) J Catal 223:328–339CrossRefGoogle Scholar
  14. 14.
    Binder A, Seipenbusch M, Muhler M, Kasper G (2009) J Catal 268:150–155CrossRefGoogle Scholar
  15. 15.
    Beck IE, Bukhtiyarov VI, Pakharukov IYu, Zaikovsky VI, Kriventsov VV, Parmon VN (2009) J Catal 268:60–67CrossRefGoogle Scholar
  16. 16.
    Simakova I, Simakova O, Mäki-Arvela P, Simakov A, Estrada M, Murzin DYu (2009) Appl Catal A 355:100–108CrossRefGoogle Scholar
  17. 17.
    Willför S, Sjöholm R, Laine C, Holmbom B (2002) Wood Sci Technol 36:101–110CrossRefGoogle Scholar
  18. 18.
    Willför S, Holmbom B (2004) Wood Sci Technol 38:173–179CrossRefGoogle Scholar
  19. 19.
    Sifontes Herrera VA, Oladele O, Kordas K, Eränen K, Mikkola J-P, Murzin D Yu, Salmi T (2011) J Chem Techn Biotech 86:658–668CrossRefGoogle Scholar
  20. 20.
    Simakova IL, Demidova YuS, Prosvirin IP, Murzin DYu, Simakov AV (2016) Int J Nanotech 13:14–25CrossRefGoogle Scholar
  21. 21.
    Abbadi A, van Bekkum H (2001) Carbohydrates. In: Sheldon RA, van Bekkum H (eds) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim, pp 380–388Google Scholar
  22. 22.
    Bermejo-Deval R, Gounder R, Davis ME (2012) ACS Catal 2:2705–2713CrossRefGoogle Scholar
  23. 23.
    Moliner M, Román-Leshkov Yu, Davis ME (2010) Proc Natl Acad Sci USA 107:6164–6168CrossRefGoogle Scholar
  24. 24.
    Hajek J, Murzin DYu, Salmi T, Mikkola J-P (2013) Top Catal 56:839–845CrossRefGoogle Scholar
  25. 25.
    Murzin DYu (2010) J Catal 276:85–91CrossRefGoogle Scholar
  26. 26.
    Murzin DYu (2015) Catal Lett 145:1948–1954CrossRefGoogle Scholar
  27. 27.
    Temkin MI (1979) Adv Catal 28:173Google Scholar
  28. 28.
    Bhatia S, Engelke F, Pruski M, Gerstein BC, King TS (1994) J Catal 147:455–464CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Irina L. Simakova
    • 1
  • Yulia S. Demidova
    • 1
  • Elena V. Murzina
    • 2
  • Atte Aho
    • 2
  • Dmitry Yu. Murzin
    • 2
    Email author
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurkuFinland

Personalised recommendations