Direct Water Decomposition on Transition Metal Surfaces: Structural Dependence and Catalytic Screening

Abstract

Density functional theory calculations are used to investigate thermal water decomposition over the close-packed (111), stepped (211), and open (100) facets of transition metal surfaces. A descriptor-based approach is used to determine that the (211) facet leads to the highest possible rates. A range of 96 binary alloys were screened for their potential activity and a rate control analysis was performed to assess how the overall rate could be improved.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Jellinek H, Kachi H (1984) The catalytic thermal decomposition of water and the production of hydrogen. Int J Hydrogen Energy 9:677–688. doi:10.1016/0360-3199(84)90265-9

    CAS  Article  Google Scholar 

  2. 2.

    Man IC, Su HY, Calle Vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165

    CAS  Article  Google Scholar 

  3. 3.

    Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy 29:1587–1599. doi:10.1016/j.ijhydene.2004.02.019

    CAS  Article  Google Scholar 

  4. 4.

    Grabow LC, Studt F, Abild-Pedersen F et al (2011) Descriptor-based analysis applied to HCN synthesis from NH3 and CH4. Angew Chem 123:4697–4701. doi:10.1002/ange.201100353

    Article  Google Scholar 

  5. 5.

    Medford AJ, Shi C, Hoffmann MJ et al (2015) CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catal Lett. doi:10.1007/s10562-015-1495-6

    Google Scholar 

  6. 6.

    Nørskov JK, Bligaard T, Logadóttir Á et al (2002) Universality in heterogeneous catalysis. J Catal 209:275–278. doi:10.1006/jcat.2002.3615

    Article  Google Scholar 

  7. 7.

    Greeley J, Jaramillo TF, Bonde J et al (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913. doi:10.1038/nmat1752

    CAS  Article  Google Scholar 

  8. 8.

    Xu Y, Lausche AC, Wang S et al (2013) In silico search for novel methane steam reforming catalysts. New J, Phys

    Google Scholar 

  9. 9.

    Yoo JS, Abild-Pedersen F, Nørskov JK, Studt F (2014) A theoretical analysis of transition metal catalysts for formic acid decomposition. ACS Catal 4:1226–1233

    CAS  Article  Google Scholar 

  10. 10.

    Studt F, Sharafutdinov I, Abild-Pedersen F et al (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem. doi:10.1038/NCHEM.1873

    Google Scholar 

  11. 11.

    Abild-Pedersen F, Greeley J, Studt F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105. doi:10.1103/PhysRevLett.99.016105

    CAS  Article  Google Scholar 

  12. 12.

    Jones G, Studt F, Abild-Pedersen F et al (2011) Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces. Chem Eng Sci 66:6318–6323. doi:10.1016/j.ces.2011.02.050

    CAS  Article  Google Scholar 

  13. 13.

    Jones G, Bligaard T, Abild-Pedersen F, Nørskov JK (2008) Using scaling relations to understand trends in the catalytic activity of transition metals. J Phys 20:064239. doi:10.1088/0953-8984/20/6/064239

    CAS  Google Scholar 

  14. 14.

    Logadóttir Á, Rod TH, Nørskov JK et al (2001) The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal 197:229–231

    Article  Google Scholar 

  15. 15.

    Bligaard T, Nørskov JK, Dahl S et al (2004) The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224:206–217

    CAS  Article  Google Scholar 

  16. 16.

    Wang S, Petzold V, Tripkovic V et al (2011) Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys Chem Chem Phys 13:20760–20765. doi:10.1039/c1cp20547a

    CAS  Article  Google Scholar 

  17. 17.

    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895. doi:10.1103/PhysRevB.41.7892

    Article  Google Scholar 

  18. 18.

    Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter 21:395502. doi:10.1088/0953-8984/21/39/395502

    Google Scholar 

  19. 19.

    Wellendorff J, Lundgaard KT, Møgelhøj A et al (2012) Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B 85:235149. doi:10.1103/PhysRevB.85.235149

    Article  Google Scholar 

  20. 20.

    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. doi:10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  21. 21.

    Falsig H, Shen J, Khan TS et al (2013) On the structure sensitivity of direct NO decomposition over low-index transition metal facets. Top Catal 57:80–88. doi:10.1007/s11244-013-0164-5

    Article  Google Scholar 

  22. 22.

    Medford AJ, Lausche AC, Abild-Pedersen F et al (2013) Activity and selectivity trends in synthesis gas conversion to higher alcohols. Top Catal. doi:10.1007/s11244-013-0169-0

    Google Scholar 

  23. 23.

    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904. doi:10.1063/1.1329672

    CAS  Article  Google Scholar 

  24. 24.

    Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T (2014) Fundamental concepts in heterogeneous. Catalysis. doi:10.1002/9781118892114

    Google Scholar 

  25. 25.

    Yoo JS, Khan TS, Abild-Pedersen F et al (2015) On the role of the surface oxygen species during A-H (A = C, N, O) bond activation: a density functional theory study. Chem Commun 51:2621–2624. doi:10.1039/C4CC08658A

    CAS  Article  Google Scholar 

  26. 26.

    Wang S, Temel B, Shen J et al (2010) Universal Brønsted-Evans-Polanyi relations for C-C, C–O, C–N, N–O, N–N, and O–O dissociation reactions. Catal Lett 141:370–373. doi:10.1007/s10562-010-0477-y

    Article  Google Scholar 

  27. 27.

    Yoo JS, Zhao Z-J, Nørskov JK, Studt F (2015) Effect of Boron modifications of palladium catalysts for the production of hydrogen from formic acid. ACS Catal. doi:10.1021/acscatal.5b01497

    Google Scholar 

  28. 28.

    Bligaard T, Nørskov JK (2007) Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta 52:5512–5516. doi:10.1016/j.electacta.2007.02.041

    CAS  Article  Google Scholar 

  29. 29.

    Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810–815. doi:10.1038/nmat1223

    CAS  Article  Google Scholar 

  30. 30.

    Greeley J, Stephens I, Bondarenko AS et al (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556

    CAS  Article  Google Scholar 

  31. 31.

    Stegelmann C, Andreasen A, Campbell CT (2009) Degree of rate control: how much the energies of intermediates and transition states control rates. J Am Chem Soc 131:8077–8082. doi:10.1021/ja9000097

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank the US Department of Energy, Office of Basic Energy Sciences.

Author contributions

This Project was carried out as part of the course “Electronic Structure Theory and Applications to Chemical Kinetics” (CHEMENG 444/ENERGY 256) from the Department of Chemical Engineering and the Department of Energy Resources Engineering at Stanford University. CT, KL, JW, and JKN designed the project. CT, KL, JSY, HA, LDC, CD, TG, CG, TJ, CK, AL, XL, BL, RM, JHM, LP, AS, JW, MW, MY, ZJZ carried out the calculations and performed the analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jens K. Nørskov.

Additional information

Hassan Aljama, Leanne D. Chen, Colin F. Dickens, Taylor S. Geisler, Chris J. Guido, Thomas M. Joseph, Charlotte S. Kirk, Allegra A. Latimer, Brandon Loong, Ryan J. McCarty, Joseph H. Montoya, Lasana Power, Aayush R. Singh, Joshua J. Willis, Martin M. Winterkorn, and Mengyao Yuan have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3311 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsai, C., Lee, K., Yoo, J.S. et al. Direct Water Decomposition on Transition Metal Surfaces: Structural Dependence and Catalytic Screening. Catal Lett 146, 718–724 (2016). https://doi.org/10.1007/s10562-016-1708-7

Download citation

Keywords

  • Heterogeneous catalysis
  • Kinetic modeling
  • DFT