Skip to main content

Advertisement

Log in

In situ DRIFTS Studies on Cu, Ni and CuNi catalysts for Ethanol Decomposition Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalyst nanopowders containing copper and nickel were synthesized using solution combustion synthesis method for hydrogen production from ethanol decomposition. Detailed in situ DRIFTS studies were conducted on three catalysts (Cu, Ni and CuNi) between 50 and 400 °C to identify the reaction pathways leading to differences in product selectivity over these catalysts. The catalysts nanopowders were characterized before and after reaction using various techniques (XRD, SEM and TEM) to understand the effect of reaction on catalytically active nanopowders. DRIFTS studies indicate that ethanol decomposition on Cu surface proceeds via acetaldehyde formation at low temperature (200–300 °C), generates ethyl acetate and carbon dioxide at 400 °C. Ni was more selective for methane and carbon monoxide. CuNi catalysts follows a trend similar to Cu catalyst at low temperature producing relatively more stable acetaldehyde intermediate that Ni, however at temperature above 300 °C, it behaves more like Ni catalyst producing only methane and carbon monoxide.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agrawal R, Offutt M, Ramage MP (2005) AIChE J 51:1582–1589

    Article  CAS  Google Scholar 

  2. Dunn S (2002) Int J Hydrogen Energy 27:235–264

    Article  CAS  Google Scholar 

  3. Nielsen SK, Karlsson K (2007) Int J Global Energy Issues 27:302–322

    Article  Google Scholar 

  4. Winter C, Nitsch J (2012) Hydrogen as an energy carrier: technologies, systems, economy. Springer, New York

    Google Scholar 

  5. Dutta S (2014) J Ind Eng Chem 20:1148–1156

    Article  CAS  Google Scholar 

  6. Eberle U, Müller B, von Helmolt R (2012) Energy Environ Sci 5:8780–8798

    Article  Google Scholar 

  7. Gurevich IG (2008) J Eng Phys Thermophys 81:6–16

    Article  Google Scholar 

  8. Trimm DL (2005) Appl Catal A Gen 296:1–11

    Article  CAS  Google Scholar 

  9. Balat M (2009) Energy Sources A 31:39–50

    Article  CAS  Google Scholar 

  10. Neelkanth GD, Rajani SB (2009) In: Gupta RB (ed) Hydrogen fuel: production, transport, and storage. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  11. Ryutaro H, Xing LY (2009) In: Gupta RB (ed) Hydrogen fuel: production, transport, and storage. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  12. Lin SY (2009) In: Gupta RB (ed) Hydrogen fuel: production, transport, and storage. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  13. Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Int J Energy Res 32:379–407

    Article  CAS  Google Scholar 

  14. Dardor D, Bhosale RR, Gharbia S, Kumar A (2015) Al Momani F. J Emerg Trends Eng Appl Sci 6:129–135

    Google Scholar 

  15. Kumar A, Cross A, Manukyan K, Bhosale RR, van den Broeke LJP, Miller JT, Mukasyan AS, Wolf EE (2015) Chem Eng J 278:46–54

    Article  CAS  Google Scholar 

  16. Bhosale RR, Kumar A, van den Broeke LJP, Gharbia S, Dardor D, Jilani M, Folady J, Al-Fakih MS, Tarsad MA (2015) Int J Hydrog Energy 40:1639–1650

    Article  CAS  Google Scholar 

  17. Kumar A, Miller JT, Mukasyan AS, Wolf EE (2013) Appl Catal A Gen 467:593–603

    Article  CAS  Google Scholar 

  18. Carotenuto G, Kumar A, Miller J, Mukasyan A, Santacesaria E, Wolf E (2013) Catal Today 203:163–173

    Article  CAS  Google Scholar 

  19. Kumar A, Mukasyan A, Wolf E (2011) Appl Catal A Gen 401:20–28

    Article  CAS  Google Scholar 

  20. Kumar A, Mukasyan A, Wolf E (2010) Ind Eng Chem Res 49:11001–11008

    Article  CAS  Google Scholar 

  21. Kumar A, Mukasyan AS, Wolf EE (2010) Appl Catal A Gen 372:175–183

    Article  CAS  Google Scholar 

  22. Song H, Zhang L, Ozkan US (2012) Top Catal 55:1324–1331

    Article  CAS  Google Scholar 

  23. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094–4123

    Article  CAS  Google Scholar 

  24. Barbaro P, Bianchini C (2009) In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley, Weinheim; Chichester

    Chapter  Google Scholar 

  25. Song H, Tan B, Ozkan US (2009) Catal Lett 132:422–429

    Article  CAS  Google Scholar 

  26. Aden A (2008) Biochemical production of ethanol from corn stover: 2007 state of technology model. National Renewable Energy Laboratory, Golden

    Google Scholar 

  27. Wang W, Wang Z, Ding Y, Xi J, Lu G (2002) Catal Lett 81:63–68

    Article  CAS  Google Scholar 

  28. Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Biomass Bioenergy 30:863–869

    Article  Google Scholar 

  29. Sun Y, Cheng J (2002) Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  30. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098–2106

    Article  CAS  Google Scholar 

  31. Haga F, Nakajima T, Miya H, Mishima S (1997) Catal Lett 48:223–227

    Article  CAS  Google Scholar 

  32. Basagiannis Aristides C, Panagiotopoulou Paraskevi, Verykios Xenophon E (2008) Top Catal 51:2–12

    Article  CAS  Google Scholar 

  33. Yu W, Porosoff MD, Chen JG (2012) Chem Rev 112:5780–5817

    Article  CAS  Google Scholar 

  34. Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Science 324:1302–1305

    Article  CAS  Google Scholar 

  35. Zhang J, Wang H, Dalai AK (2007) J Catal 249:300–310

    Article  CAS  Google Scholar 

  36. Akdim O, Cai W, Fierro V, Provendier H, van Veen A, Shen W, Mirodatos C (2008) Top Catal 51:22–38

    Article  CAS  Google Scholar 

  37. Mariño F, Boveri M, Baronetti B, Laborde M (2004) Int J Hydrog Energy 29:67–71

    Article  Google Scholar 

  38. Rajesh H, Ozkan U (1993) Ind Eng Chem Res 32:1622–1630

    Article  CAS  Google Scholar 

  39. Iwasa N, Takezawa N (1991) Bull Chem Soc Jpn 64:2619–2623

    Article  CAS  Google Scholar 

  40. Cross A, Kumar A, Wolf EE, Mukasyan AS (2012) Ind Eng Chem Res 51:12004–12008

    Article  CAS  Google Scholar 

  41. Ashok A, Kumar A, Bhosale RR, Saleh MAH, van den Broeke LJP (2015) RSC Adv 5:28703–28712

    Article  CAS  Google Scholar 

  42. Kumar A, Wolf EE, Mukasyan AS (2010) AIChE J 57:2207–2214

    Article  Google Scholar 

  43. Kumar A, Wolf EE, Mukasyan AS (2011) AIChE J 57:3473–3479

    Article  CAS  Google Scholar 

  44. Baker RTK (1989) Carbon 27:315–323

    Article  CAS  Google Scholar 

  45. Mukasyan AS, Dinka P (2007) Adv Eng Mat 9:653–657

    Article  CAS  Google Scholar 

  46. Mariño FJ, Cerrella EG, Duhalde S, Jobbagy M, Laborde MA (1998) Int J Hydrog Energy 23:1095–1101

    Article  Google Scholar 

  47. Scott M, Goeffroy M, Chiu W, Blackford MA, Idriss H (2008) Top Catal 51:13–21

    Article  CAS  Google Scholar 

  48. Natal-Santiago MA, Dumesic JA (1998) J Catal 175:252–268

    Article  CAS  Google Scholar 

  49. Iwasita T, Pastor E (1994) Electrochim Acta 39:531–537

    Article  CAS  Google Scholar 

  50. Yu Z, Chuang SS (2007) J Catal 246:118–126

    Article  CAS  Google Scholar 

  51. Sutton JE, Panagiotopoulou P, Verykios XE, Vlachos DG (2013) J Phys Chem C 117:4691–4706

    Article  CAS  Google Scholar 

  52. Zanchet D, Santos JBO, Damyanova S, Gallo JMR, C. Bueno JM (2015) ACS Catal 5:3841–3863

    Article  CAS  Google Scholar 

  53. Walter K, Buyevskaya O, Wolf D, Baerns M (1994) Catal Lett 29:261–270

    Article  CAS  Google Scholar 

  54. Kazansky VB, Serykh AI, Pidko EA (2004) J Catal 225:369–373

    Article  CAS  Google Scholar 

  55. Errahali M, Gatti G, Tei L, Canti L, Fraccarollo A, Cossi M, Marchese L (2014) J Phys Chem C 118:10053–10060

    Article  CAS  Google Scholar 

  56. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932–934

    Article  CAS  Google Scholar 

  57. Cui C, Li H, Liu X, Gao M, Yu S (2012) ACS Catal 2:916–924

    Article  CAS  Google Scholar 

  58. Xin HL, Alayoglu S, Tao R, Genc A, Wang C, Kovarik L, Stach EA, Wang L, Salmeron M, Somorjai GA (2014) Nano Lett 14:3203–3207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication was made possible by JSREP Grant (JSREP-05-004-2-002) from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author(s). The authors also wish to acknowledge the technical services granted by Central Laboratory Unit (CLU) and Gas Processing Centre (GPC) at Qatar University along with QU internal Grant (QUUG-CENG-CHE-14/15-9) to support this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ashok, A., Bhosale, R.R. et al. In situ DRIFTS Studies on Cu, Ni and CuNi catalysts for Ethanol Decomposition Reaction. Catal Lett 146, 778–787 (2016). https://doi.org/10.1007/s10562-016-1706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1706-9

Keywords

Navigation