Skip to main content

Advertisement

Log in

Variation Trends of CO Hydrogenation Performance of (Al)–O–(Zn) Supported Cobalt Nanocomposites: Effects of Gradual Doping with Zn–O Lewis Base

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Literature about Lewis base doped spinel-type cobalt CO hydrogenation catalysts is sparse. A series of undoped Co/γ-Al2O3 as well as Zn–O Lewis base doped Co0/(Al)–O–(Zn) nanocomposites were prepared via coprecipitation or impregnation followed by calcinations and single-step reduction. The overall concentration of zinc by weight ranges from 0 to 68.23 %. These materials were examined by XRD, nitrogen sorption, CO2-TPD, FESEM and HRTEM. The nanocomposite with atomic Zn/(Al + Zn) ratio of 1/5 exhibits the smallest average size of Co0 crystallites of 7.6 nm as well as the largest BET surface area of 151.1 m2/g. The CO hydrogenation performance of nanocomposites were tested at a pressure of 2.0 MPa and a space velocity of 700 mL g cat−1 h−1. Variation trends of CO hydrogenation performance due to gradual doping with Zn–O Lewis base were described in details. The CO2-TPD data suggest that doping with zinc may generally enhance the surface basicity of nanocomposites. Appropriate doping the alumina support with Zn–O Lewis base may effectively lower down the production of methane by up to ca. 23 %, suppress the production of C5+ hydrocarbons, facilitate the production of C2–C4 hydrocarbons, and significantly enhance the C2–C4 olefin/paraffin ratio, which are favored by the Fischer–Tropsch to olefins (FTO) process.

Graphical Abstract

The CO2-TPD data suggest that doping with zinc may generally enhance the surface basicity of nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) Catal Sci Technol 4:2210–2229

    Article  CAS  Google Scholar 

  2. Krylova AY (2014) Solid Fuel Chem 48:22–35

    Article  CAS  Google Scholar 

  3. Eschemann TO, Lamme WS, Manchester RL, Parmentier TE, Cognigni A, Roenning M, de Jong KP (2015) J Catal 328:130–138

    Article  CAS  Google Scholar 

  4. Cho JM, Ahn CI, Pang C, Bae JW (2015) Catal Sci Technol 5:3525–3535

    Article  CAS  Google Scholar 

  5. Galvis HMT, de Jong KP (2013) ACS Catal 3:2130–2149

    Article  Google Scholar 

  6. Liu Z, Xing Y, Xue Y, Wu D, Fang S (2015) J Nanopart Res 17. doi:10.1007/s11051-015-2899-3

  7. Maitlis PM, Zanotti V (2009) Chem Commun 1619–1634

  8. Maitlis PM, de Klerk A (2013) Greener Fischer-Tropsch Processes for Fuels and Feedstocks. Wiley-VCH Verlag & Co. KGaA, Weinheim, pp 237–265

    Book  Google Scholar 

  9. Maitlis PM, Zanotti V (2008) Catal Lett 122:80–83

    Article  CAS  Google Scholar 

  10. Buyanov RA, Pakhomov NA (2001) Kinet Catal 42:64–75

    Article  CAS  Google Scholar 

  11. Jongsomjit B, Panpranot J, Goodwin JG (2001) J Catal 204:98–109

    Article  CAS  Google Scholar 

  12. Pan Z, Bukur DB (2011) Appl Catal A-Gen 404:74–80

    CAS  Google Scholar 

  13. Wang X, Ning W, Hu L, Li Y (2012) Catal Commun 24:61–64

    Article  CAS  Google Scholar 

  14. Pan Z, Parvari M, Bukur DB (2014) Appl Catal A-Gen 480:79–85

    Article  CAS  Google Scholar 

  15. Marin RP, Kondrat SA, Davies TE, Morgan DJ, Enache DI, Combes GB, Taylor SH, Bartley JK, Hutchings GJ (2014) Catal Sci Technol 4:1970–1978

    Article  CAS  Google Scholar 

  16. Fronzo AD, Pirola C, Comazzi A, Galli F, Bianchi CL, Michele AD, Vivani R, Nocchetti M, Bastianini M, Boffito DC (2014) Fuel 119:62–69

    Article  Google Scholar 

  17. Feyzi M, Khodaei MM, Shahmoradi J (2012) Fuel Process Technol 93:90–98

    Article  CAS  Google Scholar 

  18. Madikizela-Mnqanqeni NN, Coville NJ (2005) J Mol Catal A: Chem 225:137–142

    Article  CAS  Google Scholar 

  19. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197–205

    Article  CAS  Google Scholar 

  20. Enger BC, Fossan Å-L, Borg Ø, Rytter E, Holmen A (2011) J Catal 284:9–22

    Article  CAS  Google Scholar 

  21. Mo X, Tsai Y-T, Gao J, Mao D, Goodwin JGJ (2012) J Catal 285:208–215

    Article  CAS  Google Scholar 

  22. Enger BC, Froeseth V, Yang J, Rytter E, Holmen A (2013) J Catal 297:187–192

    Article  CAS  Google Scholar 

  23. Madikizela-Mnqanqeni NN, Coville NJ (2007) Appl Catal A-Gen 317:195–203

    Article  CAS  Google Scholar 

  24. Liu Z, Xue Y, Wu D, Xing Y, Fang S (2015) Catal Lett 145:1941–1947

    Article  CAS  Google Scholar 

  25. Xing Y, Liu Z, Suib SL (2007) Chem Mater 19:4820–4826

    Article  CAS  Google Scholar 

  26. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Simmieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  27. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu XD, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  28. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Froeseth V, Holmen A, de Jong KP (2009) J Am Chem Soc 131:7197–7203

    Article  Google Scholar 

  29. Wan H, Wu B, Zhang C, Teng B, Zhu Y, Xiang H, Li Y (2006) Fuel 85:1371–1377

    Article  CAS  Google Scholar 

  30. Kokes RJ (1972) Adv Catal 1–50

  31. Prieto G, De Mello MIS, Concepción P, Murciano R, Pergher SBC, Martıńez A (2015) ACS Catal 5:3323–3335

    Article  CAS  Google Scholar 

  32. Xing Y, Liu Z, Couttenye RA, Willis WS, Suib SL, Fanson PT, Hirata H, Ibe M (2008) J Catal 253:28–36

    Article  CAS  Google Scholar 

  33. Dalai AK, Davis BH (2008) Appl Catal A-Gen 348:1–15

    Article  CAS  Google Scholar 

  34. Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272:287–297

    Article  CAS  Google Scholar 

  35. Audier M, Coulon M, Bonnetain L (1979) Carbon 17:391–394

    Article  CAS  Google Scholar 

  36. Lin CH, Chen CL, Wang JH (2011) J Phys Chem C 115:18582–18588

    Article  CAS  Google Scholar 

  37. Madikizela NN, Coville NJ (2002) J Mol Catal A: Chem 181:129–136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (NSFC, No. U1204202 and 21571161) for financial support. We also thank Henan Provincial Foundation for Scientific and Technological Program (No. 124300510041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Xing, Zhenxin Liu or Shaoming Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Liu, Z., Xue, Y. et al. Variation Trends of CO Hydrogenation Performance of (Al)–O–(Zn) Supported Cobalt Nanocomposites: Effects of Gradual Doping with Zn–O Lewis Base. Catal Lett 146, 682–691 (2016). https://doi.org/10.1007/s10562-016-1692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1692-y

Keywords

Navigation