Advertisement

Catalysis Letters

, Volume 146, Issue 2, pp 518–524 | Cite as

Ternary CoAgPd Nanoparticles Confined Inside the Pores of MIL-101 as Efficient Catalyst for Dehydrogenation of Formic Acid

  • Nan Cao
  • Shiyi Tan
  • Wei Luo
  • Kai HuEmail author
  • Gongzhen Cheng
Article

Abstract

Highly dispersed ternary CoAgPd nanoparticles with different composition have been successfully immobilized on the metal-organic frameworks (MIL-101) by using a simple liquid impregnation method for the first time. The molecular scale electronic synergistic effect between non-noble metal Co and AgPd NPs and the confinement effect of MIL-101 are the crucial roles for the improvement of catalytic performances toward dehydrogenation of formic acid under mild conditions. The resultant catalysts are composition dependent toward dehydrogenation of formic acid, while Co9Ag21Pd70@MIL-101 exhibits exceedingly high catalytic activity, with the turnover frequency value of 98 h−1, and 100 % hydrogen selectivity at 50 °C.

Graphical Abstract

Highly dispersed ternary CoAgPd NPs have been successfully immobilized on the pores of MIL-101 by using a simple liquid impregnation method for the first time. The resultant catalysts are composition dependent toward dehydrogenation of formic acid, while Co9Ag21Pd70@MIL-101 exhibits exceedingly high catalytic activity, with TOF value of 98 h−1, and 100 % hydrogen selectivity at 50 °C

Keywords

Hydrogen storage MIL-101 Formic acid 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21201134, 21571145), the Natural Science Foundation of Jiangsu Province (BK20130370) and Large-scale Instrument and Equipment Sharing Foundation of Wuhan University.

Supplementary material

10562_2015_1671_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1297 kb)

References

  1. 1.
    Yang QY, Liu DH, Zhong CL, Li JR (2013) Chem Rev 113:8261CrossRefGoogle Scholar
  2. 2.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341:974CrossRefGoogle Scholar
  3. 3.
    Bloch WM, Babarao R, Hill MR, Doonan CJ, Sumby CJ (2013) J Am Chem Soc 135:10441CrossRefGoogle Scholar
  4. 4.
    Bradshaw D, Garai A, Huo J (2012) Chem Soc Rev 41:2344CrossRefGoogle Scholar
  5. 5.
    Wang C, Liu DM, Lin WB (2013) J Am Chem Soc 135:13222CrossRefGoogle Scholar
  6. 6.
    Aijaz A, Akita T, Tsumori N, Xu Q (2013) J Am Chem Soc 135:16356CrossRefGoogle Scholar
  7. 7.
    Hosseinzadeh R, Aghili N, Tajbakhsh M (2015) Catal Lett. doi: 10.1007/s10562-015-1622-4 Google Scholar
  8. 8.
    Moon HR, Limb DW, Suh MP (2013) Chem Soc Rev 42:1807CrossRefGoogle Scholar
  9. 9.
    Kuo CH, Tang Y, Chou LY, Sneed BT, Brodsky CN, Zhao Z, Tsung CK (2012) J Am Chem Soc 134:14345CrossRefGoogle Scholar
  10. 10.
    Javadian P, Sheppard DA, buckley CE, Jensen TR (2015) Nano Energy 11:96CrossRefGoogle Scholar
  11. 11.
    Suh MP, Park HJ, Prasad TK, Lim DW (2012) Chem Rev 112:782CrossRefGoogle Scholar
  12. 12.
    Luo W, Campbell PG, Zakharov LN, Liu SY (2011) J Am Chem Soc 133:19326CrossRefGoogle Scholar
  13. 13.
    Zhou SD, Qian C, Chen XZ (2011) Catal Lett 141:726CrossRefGoogle Scholar
  14. 14.
    Yadav M, Xu Q (2012) Energy Environ Sci 5:9698CrossRefGoogle Scholar
  15. 15.
    Zhang ZY, Cao SW, Liao YS, Xue C (2015) Appl Catal B Environ 162:204CrossRefGoogle Scholar
  16. 16.
    Grasemann M, Laurenczy G (2012) Energy Environ Sci 5:8171CrossRefGoogle Scholar
  17. 17.
    Bulut A, Yurderi M, Karatas Y, Say Z, Kivrak H, Kaya M, Gulcan M, Ozensoy E, Zahmakiran M (2015) ACS Catal 5(10):6099CrossRefGoogle Scholar
  18. 18.
    Yang L, Hua X, Su J, Luo W, Chen SL, Cheng GZ (2015) Appl Catal B Environ 168:423CrossRefGoogle Scholar
  19. 19.
    Dai HM, Cao N, Yang L, Su J, Luo W, Cheng GZ (2014) J Mater Chem A 2:11060CrossRefGoogle Scholar
  20. 20.
    Chen Y, Zhu QL, Tsumori N, Xu Q (2015) J Am Chem Soc 137:106CrossRefGoogle Scholar
  21. 21.
    Yu WY, Mullen GM, Flaherty DW, Mullins CB (2014) J Am Chem Soc 136:11070CrossRefGoogle Scholar
  22. 22.
    Hu C, Ting SW, Tsui J, Chan KY (2012) Int J Hydrog Energy 37:6372CrossRefGoogle Scholar
  23. 23.
    Qin YL, Wang J, Meng FZ, Wang LM, Zhang XB (2013) Chem Commun 49:10028CrossRefGoogle Scholar
  24. 24.
    Wang ZL, Ping Y, Yan YM, Wang HL, Jiang Q (2014) Int J Hydrog Energy 39:4850CrossRefGoogle Scholar
  25. 25.
    Koós Á, Solymosi F (2010) Cata Lett 138:23CrossRefGoogle Scholar
  26. 26.
    Gu XJ, Lu ZH, Jiang HL, Akita T, Xu Q (2011) J Am Chem Soc 133:11822CrossRefGoogle Scholar
  27. 27.
    Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) Science 309:2040CrossRefGoogle Scholar
  28. 28.
    Fellay C, Dyson PJ, Laurenczy G (2008) Angew Chem Int Ed 47:3966CrossRefGoogle Scholar
  29. 29.
    Zhu QL, Tsumori N, Xu Q (2015) J Am Chem Soc 137:11734Google Scholar
  30. 30.
    Jiang K, Xu K, Zou SZ, Cai WB (2014) J Am Chem Soc 136:4861CrossRefGoogle Scholar
  31. 31.
    Wang HF, Liu ZP (2009) J Phys Chem C 113:17502CrossRefGoogle Scholar
  32. 32.
    Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2013) J Am Chem Soc 135:9991CrossRefGoogle Scholar
  33. 33.
    Gao W, Keith JA, Anton J, Jacob T (2010) J Am Chem Soc 132:18377CrossRefGoogle Scholar
  34. 34.
    Huang CY, Song M, Gu ZY, Wang HF, Yan XP (2011) Environ Sci Technol 45:4490CrossRefGoogle Scholar
  35. 35.
    Bulut A, Yurderi M, Karatas Y, Zahmakiran M, Kivrak H, Gulcan M, Kaya M (2015) Appl Catal B Environ 164:324CrossRefGoogle Scholar
  36. 36.
    Cao N, Su J, Wu XJ, Luo W, Cheng GZ (2014) Int J Hydrog Energy 39:9726CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nan Cao
    • 1
  • Shiyi Tan
    • 1
  • Wei Luo
    • 1
    • 2
  • Kai Hu
    • 1
    Email author
  • Gongzhen Cheng
    • 1
  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China
  2. 2.Suzhou Institute of Wuhan UniversitySuzhouPeople’s Republic of China

Personalised recommendations