Skip to main content
Log in

Selective Oxidation of Methane to Methanol Over Cu- and Fe-Exchanged Zeolites: The Effect of Si/Al Molar Ratio

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Cu-, Fe- and Fe/Cu-containing zeolite (ZSM-5, beta, Y) catalysts were prepared to investigate the effect of zeolite’s physicochemical properties on the total oxygenates production and MeOH selectivity from the partial methane oxidation using H2O2 as oxidizing agent. The NH3-TPD studies have shown that the zeolite type and Si/Al molar ratio are correlated with the acid sites strength and concentration. The latter surface property was proved to have a strong influence on the oxygenate productivity. In particular, a significant increase of the methanol production was observed when lowering Si/Al ratio in the ZSM-5, Fe/ZSM-5, Cu/ZSM-5 and Cu–Fe/ZSM-5 catalysts. This can be explained by the increased amount of Brønsted acid sites capable of accommodating the active catalyst (Fe species). The Fe-only ZSM-5 catalysts exhibited the highest catalytic activity (total oxygenated products) with HCOOH being the major product, whereas the presence of only Cu was found to suppress the production of MeOOH and HCOOH. On contrary, the deposition of both Fe3+ and Cu2+ results to a switch in selectivity and the target product, MeOH, was observed in ~80 % selectivity. In the case of Cu-only ZSM-5 catalysts, a similar activity to methanol was observed regardless the copper source and synthesis method. The activity/selectivity findings of the present study confirm and complement the conclusions of the previous work by Hammond et al. (ACS Catal 3:689, 2013; ACS Catal 3:1835, 2013; Angew Chem Int Ed 51:5129, 2012; Chem Eur J 18:15735, 2012) over the well-studied Cu–Fe–zeolite system, providing also complete material balance based on both gas and liquid reaction products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hammond C, Dimitratos N, Jenkins RL, Lopez-Sanchez JA, Kondrat SA, Hasbi ab Rahim M, Forde MM, Thetford A, Taylor SH, Hagen H, Stangland EE, Kang JH, Moulijn JM, Willock DJ, Hutchings GJ (2013) ACS Catal 3:689

  2. Hammond C, Dimitratos N, Lopez-Sanchez JA, Jenkins RL, Whiting G, Kondrat SA, ab Rahim MH, Forde MM, Thetford A, Hagen H, Stangland EE, Moulijn JM, Taylor SH, Willock DJ, Hutchings GJ (2013) ACS Catal 3:1835

  3. Hammond C, Forde MM, ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ (2012) Angew Chem Int Ed 51:5129

  4. Hammond C, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, ab Rahim MH, Forde MM, Thetford A, Murphy DM, Hagen H, Stangland EE, Moulijn JM, Taylor SH, Willock DJ, Hutchings GJ (2012) Chem Eur J 18:15735

  5. Fiedler E, Grossmann G, Keresbohm DB, Weiss G, Witte C (2011) Ullmann’s Encyclopaedia of Industrial Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  6. Twig MV, Bridger GW, Spencer MS (1989) Catalyst handbook, 2nd edn. Wolfe, London

    Google Scholar 

  7. Lunsford JH (2000) Catal Today 63:165

    Article  CAS  Google Scholar 

  8. Schwarz H (2011) Angew Chem Int Ed 50:10096

    Article  CAS  Google Scholar 

  9. Hunter NR, Gesser HD, Morton LA, Yarlagadda PS, Fung DPC (1990) Appl Catal 57:45

    Article  CAS  Google Scholar 

  10. Foster NR (1985) Appl Catal 19:1

    Article  CAS  Google Scholar 

  11. Gesser HD, Hunter NR, Prakash CB (1985) Chem Rev 85:235

    Article  CAS  Google Scholar 

  12. Sen A (1998) Acc Chem Res 31:550

    Article  CAS  Google Scholar 

  13. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560

    Article  CAS  Google Scholar 

  14. Aleksandr ES, Georgiy BS (1987) Russ Chem Rev 56:442

    Article  Google Scholar 

  15. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879

    Article  CAS  Google Scholar 

  16. Panov GI, Uriarte AK, Rodkin MA, Sobolev VI (1998) Catal Today 41:365

    Article  CAS  Google Scholar 

  17. Knops-Gerrits PP, Goddard WA (2001) J Mol Catal A: Chem 166:135

    Article  CAS  Google Scholar 

  18. Wood BR, Reimer JA, Bell AT, Janicke MT, Ott KC (2004) J Catal 225:300

    Article  CAS  Google Scholar 

  19. Dubkov KA, Sobolev VI, Talsi EP, Rodkin MA, Watkins NH, Shteinman AA, Panov GI (1997) J Mol Catal A: Chem 123:155

    Article  CAS  Google Scholar 

  20. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394

    Article  CAS  Google Scholar 

  21. Beznis NV, Van Laak ANC, Weckhuysen BM, Bitter JH (2011) Micro Meso Mater 138:176

    Article  CAS  Google Scholar 

  22. Colby J, Stirling DI, Dalton H (1977) Biochem J 165:395

    Article  CAS  Google Scholar 

  23. Bollinger JM Jr (2010) Nature 465:40

    Article  CAS  Google Scholar 

  24. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Nature 465:115

    Article  CAS  Google Scholar 

  25. Hakemian AS, Rosenzweig AC (2007) Annu Rev Biochem 76:223

    Article  CAS  Google Scholar 

  26. Martinho M, Choi DW, DiSpirito AA, Antholine WE, Semrau JD, Münck E (2007) J Am Chem Soc 129:15783

    Article  CAS  Google Scholar 

  27. Forde MM, Armstrong RD, McVicker R, Wells PP, Dimitratos N, He Q, Lu L, Jenkins RL, Hammond C, Lopez-Sanchez JA, Kiely CJ, Hutchings GJ (2014) Chem Sci 5:3603

    Article  CAS  Google Scholar 

  28. Smallcombe SH, Patt SL, Keifer PA (1995) J Magn Reson Ser A 117:295

    Article  CAS  Google Scholar 

  29. Abu-Zied BM, Schwieger W, Unger A (2008) Appl Catal B: Environ 84:277

    Article  CAS  Google Scholar 

  30. Qi G, Yang RT (2005) Appl Catal B: Environ 60:13

    Article  CAS  Google Scholar 

  31. Nanba T, Masukawa S, Ogata A, Uchisawa J, Obuchi A (2005) Appl Catal B: Environ 61:288

    Article  CAS  Google Scholar 

  32. Praliaud H, Mikhailenko S, Chajar Z, Primet M (1998) Appl Catal B: Environ 16:359

    Article  CAS  Google Scholar 

  33. Brandenberger S, Kröcher O, Wokaun A, Tissler A, Althoff R (2009) J Catal 268:297

    Article  CAS  Google Scholar 

  34. Long RQ, Yang RT (2001) J Catal 198:20

    Article  CAS  Google Scholar 

  35. Akah A, Cundy C, Garforth A (2005) Appl Catal B: Environ 59:221

    Article  CAS  Google Scholar 

  36. Sultana A, Sasaki M, Suzuki K, Hamada H (2013) Catal Commun 41:21

    Article  CAS  Google Scholar 

  37. Flentge DR, Lunsford JH, Jacobs PA, Uytterhoeven JB (1975) J Phys Chem 79:354

    Article  CAS  Google Scholar 

  38. Costa C, Dzikh IP, Lopes JM, Lemos F, Ribeiro FR (2000) J Mol Catal A: Chem 154:193

    Article  CAS  Google Scholar 

  39. Shirazi L, Jamshidi E, Ghasemi MR (2008) Crys Res Tech 43:1300

    Article  CAS  Google Scholar 

  40. Costa C, Lopes JM, Lemos F, Ramôa Ribeiro F (1997) Catal Lett 44:255

  41. Costa C, Lopes JM, Lemos F, Ribeiro FR (1999) J Mol Catal A: Chem 144:233

    Article  CAS  Google Scholar 

  42. Fajula F (1995) Stud Surf Sci Catal 97:133

    Article  CAS  Google Scholar 

  43. Ribeiro FR, Alvarez F, Henriques C, Lemos F, Lopes JM, Ribeiro MF (1995) J Mol Catal A: Chem 96:245

    Article  Google Scholar 

  44. Weisz PB (1980) Pure Appl Chem 52:2091

    Article  CAS  Google Scholar 

  45. Corma A, García H, Sastre G, Viruela PM (1997) J Phys Chem B 101:4575

    Article  CAS  Google Scholar 

  46. Sastre G, Corma A (2009) J Mol Catal A: Chem 305:3

    Article  CAS  Google Scholar 

  47. Cavani F, Ballarini N, Luciani S (2009) Top Catal 52:935

    Article  CAS  Google Scholar 

  48. Yuan Q, Deng W, Zhang Q, Wang Y (2007) Adv Synth Catal 349:1199

    Article  CAS  Google Scholar 

  49. Cavani F, Teles JH (2009) ChemSusChem 2:508

    Article  CAS  Google Scholar 

  50. Yuranov I, Bulushev DA, Renken A, Kiwi-Minsker L (2004) J Catal 227:138

    Article  CAS  Google Scholar 

  51. Jia J, Sun Q, Wen B, Chen L, Sachtler WH (2002) Catal Lett 82:7

    Article  CAS  Google Scholar 

  52. Notté P (2000) Top Catal 13:387

    Article  Google Scholar 

  53. Hensen EJM, Zhu Q, Janssen RAJ, Magusin PCMM, Kooyman PJ, van Santen RA (2005) J Catal 233:123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Royal Dutch Shell is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Hellgardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalamaras, C., Palomas, D., Bos, R. et al. Selective Oxidation of Methane to Methanol Over Cu- and Fe-Exchanged Zeolites: The Effect of Si/Al Molar Ratio. Catal Lett 146, 483–492 (2016). https://doi.org/10.1007/s10562-015-1664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1664-7

Keywords

Navigation