Catalysis Letters

, Volume 146, Issue 2, pp 483–492

Selective Oxidation of Methane to Methanol Over Cu- and Fe-Exchanged Zeolites: The Effect of Si/Al Molar Ratio

  • Christos Kalamaras
  • David Palomas
  • Rene Bos
  • Andrew Horton
  • Mark Crimmin
  • Klaus Hellgardt
Article

Abstract

A series of Cu-, Fe- and Fe/Cu-containing zeolite (ZSM-5, beta, Y) catalysts were prepared to investigate the effect of zeolite’s physicochemical properties on the total oxygenates production and MeOH selectivity from the partial methane oxidation using H2O2 as oxidizing agent. The NH3-TPD studies have shown that the zeolite type and Si/Al molar ratio are correlated with the acid sites strength and concentration. The latter surface property was proved to have a strong influence on the oxygenate productivity. In particular, a significant increase of the methanol production was observed when lowering Si/Al ratio in the ZSM-5, Fe/ZSM-5, Cu/ZSM-5 and Cu–Fe/ZSM-5 catalysts. This can be explained by the increased amount of Brønsted acid sites capable of accommodating the active catalyst (Fe species). The Fe-only ZSM-5 catalysts exhibited the highest catalytic activity (total oxygenated products) with HCOOH being the major product, whereas the presence of only Cu was found to suppress the production of MeOOH and HCOOH. On contrary, the deposition of both Fe3+ and Cu2+ results to a switch in selectivity and the target product, MeOH, was observed in ~80 % selectivity. In the case of Cu-only ZSM-5 catalysts, a similar activity to methanol was observed regardless the copper source and synthesis method. The activity/selectivity findings of the present study confirm and complement the conclusions of the previous work by Hammond et al. (ACS Catal 3:689, 2013; ACS Catal 3:1835, 2013; Angew Chem Int Ed 51:5129, 2012; Chem Eur J 18:15735, 2012) over the well-studied Cu–Fe–zeolite system, providing also complete material balance based on both gas and liquid reaction products.

Graphical Abstract

Keywords

Partial oxidation of methane ZSM-5 zeolite Acidity Methanol production 

References

  1. 1.
    Hammond C, Dimitratos N, Jenkins RL, Lopez-Sanchez JA, Kondrat SA, Hasbi ab Rahim M, Forde MM, Thetford A, Taylor SH, Hagen H, Stangland EE, Kang JH, Moulijn JM, Willock DJ, Hutchings GJ (2013) ACS Catal 3:689Google Scholar
  2. 2.
    Hammond C, Dimitratos N, Lopez-Sanchez JA, Jenkins RL, Whiting G, Kondrat SA, ab Rahim MH, Forde MM, Thetford A, Hagen H, Stangland EE, Moulijn JM, Taylor SH, Willock DJ, Hutchings GJ (2013) ACS Catal 3:1835Google Scholar
  3. 3.
    Hammond C, Forde MM, ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ (2012) Angew Chem Int Ed 51:5129Google Scholar
  4. 4.
    Hammond C, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, ab Rahim MH, Forde MM, Thetford A, Murphy DM, Hagen H, Stangland EE, Moulijn JM, Taylor SH, Willock DJ, Hutchings GJ (2012) Chem Eur J 18:15735Google Scholar
  5. 5.
    Fiedler E, Grossmann G, Keresbohm DB, Weiss G, Witte C (2011) Ullmann’s Encyclopaedia of Industrial Chemistry. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Twig MV, Bridger GW, Spencer MS (1989) Catalyst handbook, 2nd edn. Wolfe, LondonGoogle Scholar
  7. 7.
    Lunsford JH (2000) Catal Today 63:165CrossRefGoogle Scholar
  8. 8.
    Schwarz H (2011) Angew Chem Int Ed 50:10096CrossRefGoogle Scholar
  9. 9.
    Hunter NR, Gesser HD, Morton LA, Yarlagadda PS, Fung DPC (1990) Appl Catal 57:45CrossRefGoogle Scholar
  10. 10.
    Foster NR (1985) Appl Catal 19:1CrossRefGoogle Scholar
  11. 11.
    Gesser HD, Hunter NR, Prakash CB (1985) Chem Rev 85:235CrossRefGoogle Scholar
  12. 12.
    Sen A (1998) Acc Chem Res 31:550CrossRefGoogle Scholar
  13. 13.
    Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560CrossRefGoogle Scholar
  14. 14.
    Aleksandr ES, Georgiy BS (1987) Russ Chem Rev 56:442CrossRefGoogle Scholar
  15. 15.
    Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879CrossRefGoogle Scholar
  16. 16.
    Panov GI, Uriarte AK, Rodkin MA, Sobolev VI (1998) Catal Today 41:365CrossRefGoogle Scholar
  17. 17.
    Knops-Gerrits PP, Goddard WA (2001) J Mol Catal A: Chem 166:135CrossRefGoogle Scholar
  18. 18.
    Wood BR, Reimer JA, Bell AT, Janicke MT, Ott KC (2004) J Catal 225:300CrossRefGoogle Scholar
  19. 19.
    Dubkov KA, Sobolev VI, Talsi EP, Rodkin MA, Watkins NH, Shteinman AA, Panov GI (1997) J Mol Catal A: Chem 123:155CrossRefGoogle Scholar
  20. 20.
    Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394CrossRefGoogle Scholar
  21. 21.
    Beznis NV, Van Laak ANC, Weckhuysen BM, Bitter JH (2011) Micro Meso Mater 138:176CrossRefGoogle Scholar
  22. 22.
    Colby J, Stirling DI, Dalton H (1977) Biochem J 165:395CrossRefGoogle Scholar
  23. 23.
    Bollinger JM Jr (2010) Nature 465:40CrossRefGoogle Scholar
  24. 24.
    Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Nature 465:115CrossRefGoogle Scholar
  25. 25.
    Hakemian AS, Rosenzweig AC (2007) Annu Rev Biochem 76:223CrossRefGoogle Scholar
  26. 26.
    Martinho M, Choi DW, DiSpirito AA, Antholine WE, Semrau JD, Münck E (2007) J Am Chem Soc 129:15783CrossRefGoogle Scholar
  27. 27.
    Forde MM, Armstrong RD, McVicker R, Wells PP, Dimitratos N, He Q, Lu L, Jenkins RL, Hammond C, Lopez-Sanchez JA, Kiely CJ, Hutchings GJ (2014) Chem Sci 5:3603CrossRefGoogle Scholar
  28. 28.
    Smallcombe SH, Patt SL, Keifer PA (1995) J Magn Reson Ser A 117:295CrossRefGoogle Scholar
  29. 29.
    Abu-Zied BM, Schwieger W, Unger A (2008) Appl Catal B: Environ 84:277CrossRefGoogle Scholar
  30. 30.
    Qi G, Yang RT (2005) Appl Catal B: Environ 60:13CrossRefGoogle Scholar
  31. 31.
    Nanba T, Masukawa S, Ogata A, Uchisawa J, Obuchi A (2005) Appl Catal B: Environ 61:288CrossRefGoogle Scholar
  32. 32.
    Praliaud H, Mikhailenko S, Chajar Z, Primet M (1998) Appl Catal B: Environ 16:359CrossRefGoogle Scholar
  33. 33.
    Brandenberger S, Kröcher O, Wokaun A, Tissler A, Althoff R (2009) J Catal 268:297CrossRefGoogle Scholar
  34. 34.
    Long RQ, Yang RT (2001) J Catal 198:20CrossRefGoogle Scholar
  35. 35.
    Akah A, Cundy C, Garforth A (2005) Appl Catal B: Environ 59:221CrossRefGoogle Scholar
  36. 36.
    Sultana A, Sasaki M, Suzuki K, Hamada H (2013) Catal Commun 41:21CrossRefGoogle Scholar
  37. 37.
    Flentge DR, Lunsford JH, Jacobs PA, Uytterhoeven JB (1975) J Phys Chem 79:354CrossRefGoogle Scholar
  38. 38.
    Costa C, Dzikh IP, Lopes JM, Lemos F, Ribeiro FR (2000) J Mol Catal A: Chem 154:193CrossRefGoogle Scholar
  39. 39.
    Shirazi L, Jamshidi E, Ghasemi MR (2008) Crys Res Tech 43:1300CrossRefGoogle Scholar
  40. 40.
    Costa C, Lopes JM, Lemos F, Ramôa Ribeiro F (1997) Catal Lett 44:255Google Scholar
  41. 41.
    Costa C, Lopes JM, Lemos F, Ribeiro FR (1999) J Mol Catal A: Chem 144:233CrossRefGoogle Scholar
  42. 42.
    Fajula F (1995) Stud Surf Sci Catal 97:133CrossRefGoogle Scholar
  43. 43.
    Ribeiro FR, Alvarez F, Henriques C, Lemos F, Lopes JM, Ribeiro MF (1995) J Mol Catal A: Chem 96:245CrossRefGoogle Scholar
  44. 44.
    Weisz PB (1980) Pure Appl Chem 52:2091CrossRefGoogle Scholar
  45. 45.
    Corma A, García H, Sastre G, Viruela PM (1997) J Phys Chem B 101:4575CrossRefGoogle Scholar
  46. 46.
    Sastre G, Corma A (2009) J Mol Catal A: Chem 305:3CrossRefGoogle Scholar
  47. 47.
    Cavani F, Ballarini N, Luciani S (2009) Top Catal 52:935CrossRefGoogle Scholar
  48. 48.
    Yuan Q, Deng W, Zhang Q, Wang Y (2007) Adv Synth Catal 349:1199CrossRefGoogle Scholar
  49. 49.
    Cavani F, Teles JH (2009) ChemSusChem 2:508CrossRefGoogle Scholar
  50. 50.
    Yuranov I, Bulushev DA, Renken A, Kiwi-Minsker L (2004) J Catal 227:138CrossRefGoogle Scholar
  51. 51.
    Jia J, Sun Q, Wen B, Chen L, Sachtler WH (2002) Catal Lett 82:7CrossRefGoogle Scholar
  52. 52.
    Notté P (2000) Top Catal 13:387CrossRefGoogle Scholar
  53. 53.
    Hensen EJM, Zhu Q, Janssen RAJ, Magusin PCMM, Kooyman PJ, van Santen RA (2005) J Catal 233:123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Christos Kalamaras
    • 1
  • David Palomas
    • 2
  • Rene Bos
    • 3
  • Andrew Horton
    • 3
  • Mark Crimmin
    • 2
  • Klaus Hellgardt
    • 1
  1. 1.Chemical Engineering DepartmentImperial College LondonLondonUK
  2. 2.Chemistry DepartmentImperial College LondonLondonUK
  3. 3.Emerging TechnologiesShell Global Solutions International B.V.AmsterdamThe Netherlands

Personalised recommendations