Catalysis Letters

, Volume 145, Issue 9, pp 1771–1777 | Cite as

Photocatalytic Water Splitting Towards Hydrogen Production on Gold Nanoparticles (NPs) Entrapped in TiO2 Nanotubes

  • Xu Yang
  • Liangpeng Wu
  • Li Du
  • Xinjun LiEmail author


A novel Au@TNT catalyst, with gold nano-particles (NPs) entrapped in TiO2 nanotube (TNT), was prepared by a vacuum assisted-impregnation route. For the photocatalytic water splitting under visible light, the Au@TNT catalyst presented 2 times higher activity than the Au/TNT with most part of gold NPs on the outer surface of TNT. The enhanced activity can be ascribed to the confinement of TNT which can effectively decreases the particle size and modulates the electronic state of gold catalyst.

Graphical Abstract


Confinement TiO2 nanotubes Gold Photocatalytic Water splitting 



This work was supported by the National Scientific Foundation of China (Project Nos. 21303210 and 51172233), Key Laboratory of Water and Air Pollution Control of Guangdong Province, China (2011A060901002), and the Fundamental Research Funds for the Central Universities, SCUT.


  1. 1.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405–408CrossRefGoogle Scholar
  2. 2.
    Hutchings GJ (1985) J Catal 96:292–295CrossRefGoogle Scholar
  3. 3.
    Enache DI, Knight DW, Hutchings GJ (2005) Catal Lett 103:43–52CrossRefGoogle Scholar
  4. 4.
    Haider P, Kimmerle B, Krumeich F, Kleist W, Grunwaldt J-D, Baiker A (2008) Catal Lett 125:169–176CrossRefGoogle Scholar
  5. 5.
    Perez Y, Aprile C, Corma A, Garcia H (2010) Catal Lett 134:204–209CrossRefGoogle Scholar
  6. 6.
    Choudhary TV, Sivadinarayana C, Datye AK, Kumar D, Goodman DW (2003) Catal Lett 86:1–8CrossRefGoogle Scholar
  7. 7.
    Park JY, Kim SM, Lee H, Naik B (2014) Catal Lett 144:1996–2004CrossRefGoogle Scholar
  8. 8.
    Qian K, Sweeny BC, Johnston-Peck AC, Niu W, Graham JO, DuChene JS, Qiu J, Wang Y-C, Engelhard MH, Su D, Stach EA, Wei WD (2014) J Am Chem Soc 136:9842–9845CrossRefGoogle Scholar
  9. 9.
    Iwase A, Kato H, Kudo A (2006) Catal Lett 108:7–10CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Nano Lett 13:14–20CrossRefGoogle Scholar
  11. 11.
    Orlov A, Jefferson DA, Macleod N, Lambert RM (2004) Catal Lett 92:41–47CrossRefGoogle Scholar
  12. 12.
    Sonawane RS, Dongare MK (2006) J Mol Catal A 243:68–76CrossRefGoogle Scholar
  13. 13.
    Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374–9375CrossRefGoogle Scholar
  14. 14.
    Lee J, Park JC, Song H (2008) Adv Mater 20:1523–1528CrossRefGoogle Scholar
  15. 15.
    La Torre A, Gimenez-Lopez MDC, Fay MW, Rance GA, Solomonsz WA, Chamberlain TW, Brown PD, Khlobystov AN (2012) ACS Nano 6:2000–2007CrossRefGoogle Scholar
  16. 16.
    Liu Y, Tsunoyama H, Akita T, Tsukuda T (2009) J Phys Chem C 113:13457–13461CrossRefGoogle Scholar
  17. 17.
    Chiang CW, Wang AQ, Wan BZ, Mou CY (2005) J Phys Chem B 109:18042–18047CrossRefGoogle Scholar
  18. 18.
    Chi YS, Lin HP, Mou CY (2005) Appl Catal A 284:199–206CrossRefGoogle Scholar
  19. 19.
    Chen W, Fan Z, Pan X, Bao X (2008) J Am Chem Soc 130:9414–9419CrossRefGoogle Scholar
  20. 20.
    Yang X, Wu L, Ma L, Li X, Wang T, Liao S (2015) Catal Commun 59:184–188CrossRefGoogle Scholar
  21. 21.
    Yang X, Yu X, Long L, Wang T, Ma L, Wu L, Bai Y, Li X, Liao S (2014) Chem Commun 50:2794–2796CrossRefGoogle Scholar
  22. 22.
    Sun X, Li Y (2003) Chem Eur J 9:2229–2238CrossRefGoogle Scholar
  23. 23.
    Chen J-J, Wu JCS, Wu PC, Tsai DP (2011) J Phys Chem C 115:210–216CrossRefGoogle Scholar
  24. 24.
    Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Chem Mater 14:3808–3816CrossRefGoogle Scholar
  25. 25.
    Yang X, Huang C, Fu Z, Song H, Liao S, Su Y, Du L, Li X (2013) Appl Catal B 140:419–425CrossRefGoogle Scholar
  26. 26.
    Wang F, Jiang Y, Gautam A, Li Y, Amal R (2014) ACS Catal 4:1451–1457CrossRefGoogle Scholar
  27. 27.
    Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) J Am Chem Soc 129:4538–4539CrossRefGoogle Scholar
  28. 28.
    Yan J, Wu G, Dai W, Guan N, Li L (2014) ACS Sustain Chem Eng 2:1940–1946CrossRefGoogle Scholar
  29. 29.
    Naik B, Kim SM, Jung CH, Moon SY, Kim SH, Park JY (2014) Adv Mater Interface 1:1300018Google Scholar
  30. 30.
    Priebe JB, Radnik J, Lennox AJJ, Pohl M-M, Karnahl M, Hollmann D, Grabow K, Bentrup U, Junge H, Beller M, Brueckner A (2015) ACS Catal 5:2137–2148CrossRefGoogle Scholar
  31. 31.
    Gomes Silva C, Juarez R, Marino T, Molinari R, Garcia H (2011) J Am Chem Soc 133:595–602CrossRefGoogle Scholar
  32. 32.
    Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943–4950CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Key Laboratory of Renewable Energy, Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouChina
  2. 2.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations