Skip to main content
Log in

SCR of Nitric Oxide by Hydrogen over Pd and Ir Based Catalysts with Different Supports

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Selective catalytic reduction of NOx with hydrogen (H2-SCR) in excess oxygen over Pd and Ir based catalysts with various silica supports was studied. The Pd/V2O5/TiO2/SBA-15 and Ir/SBA-15 catalysts showed the highest activities. The effects of noble metal, various silica supports, CO and SO2 on H2-SCR over these catalysts were also studied and compared, and possible underlying mechanisms discussed. A comparison of 1 % Ir-doped on silicas with a wide range of pore sizes showed that the peak temperature (where the NO conversion maximum was located) was directly related to the pore size: larger pores of the support resulted in higher peak temperatures. This result indicates that pore diffusion limitation played a role in determining the peak temperature. In addition, a non-noble metal catalyst, Nb2O5/SiO2, was found to have considerable activity.

Graphical Abstract

Larger pores of the support resulted in higher peak temperatures, which indicated that pore diffusion limitation played a direct role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cai Y, Ozkan US (1991) Appl Catal 78:241–255

    Article  CAS  Google Scholar 

  2. Kumthekar MW, Ozkan US (1997) Appl Catal A 151:289–303

    Article  CAS  Google Scholar 

  3. Choi EY, Nam I-S, Kim YG (1996) J Catal 161:597–604

    Article  CAS  Google Scholar 

  4. Kim YJ, Kwon HJ, Heo I, Nam I-S, Cho BK, Choung JW, Cha M-S, Yeo GK (2012) Appl Catal B 126:9–21

    Article  CAS  Google Scholar 

  5. Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W (2012) Appl Catal B 127:137–147

    Article  CAS  Google Scholar 

  6. Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) J Catal 297:56–64

    Article  CAS  Google Scholar 

  7. Fritz A, Pitchon V (1997) Appl Catal B 13:1–25

    Article  CAS  Google Scholar 

  8. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1–36

    Article  CAS  Google Scholar 

  9. Lobree LJ, Hwang I-C, Reimer JA, Bell AT (1999) J Catal 186:242–253

    Article  CAS  Google Scholar 

  10. Long RQ, Yang RT (1999) J Am Chem Soc 121:5595–5596

    Article  CAS  Google Scholar 

  11. Long RQ, Yang RT (2001) J Catal 198:20–28

    Article  CAS  Google Scholar 

  12. Qi G, Gatt JE, Yang RT (2004) J Catal 226:120–128

    Article  CAS  Google Scholar 

  13. Qu R, Gao X, Cen K, Li JH (2013) Appl Catal B 142–143:290–297

    Article  Google Scholar 

  14. Brandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev 50:492–531

    Article  CAS  Google Scholar 

  15. Granger P, Parvulescu VI (2011) Chem Rev 111:3155–3207

    Article  CAS  Google Scholar 

  16. Hecker WC, Bell AT (1985) J Catal 92:247–259

    Article  CAS  Google Scholar 

  17. Ueda A, Takayuki N, Masashi A, Kobayashi T (1998) Catal Today 45:135–138

    Article  CAS  Google Scholar 

  18. Burch R, Coleman MD (1999) Appl Catal B 23:115–121

    Article  CAS  Google Scholar 

  19. Costa CN, Savva PG, Andronikou C, Lambrou PS, Polychronopoulou K, Belessi VC, Stathopoulos VN, Pomonis PJ, Efstathiou AM (2002) J Catal 209:456–471

    Article  CAS  Google Scholar 

  20. Burch R, Coleman MD (2002) J Catal 208:435–447

    Article  CAS  Google Scholar 

  21. Shibata J, Hashimoto M, Shimizu K, Yoshida H, Hattori T, Satsuma A (2004) J Phys Chem B 108:18327–18335

    Article  CAS  Google Scholar 

  22. Machida M, Watanabe T (2004) Appl Catal B 52:281–286

    Article  CAS  Google Scholar 

  23. Qi G, Yang RT, Thompson LT (2004) Appl Catal A 259:261–267

    Article  CAS  Google Scholar 

  24. Qi G, Yang RT, Rinaldi FC (2006) J Catal 237:381–392

    Article  CAS  Google Scholar 

  25. Costa CN, Efstathiou AM (2007) Appl Catal B 72:240–252

    Article  CAS  Google Scholar 

  26. Wu P, Li L, Yu Q, Wu G, Guan N (2010) Catal Today 158:228–234

    Article  CAS  Google Scholar 

  27. Hamada H, Haneda M (2012) Appl Catal A 421–422:1–13

    Article  Google Scholar 

  28. Yokota K, Fukui M, Tanaka T (1997) Appl Surf Sci 121–122:273–277

    Article  Google Scholar 

  29. Rodríguez GCM, Saruhan B (2010) Appl Catal B 93:304–313

    Article  Google Scholar 

  30. Costa CN, Savva PG, Fierro JLG, Efstathiou AM (2007) Appl Catal B 75:147–156

    Article  CAS  Google Scholar 

  31. Savva PG, Costa CN (2011) Catal Rev Sci Eng 53:91–151

    Article  CAS  Google Scholar 

  32. Liu Z, Li J, Woo SI (2012) Energy Environ Sci 5:8799–8814

    Article  CAS  Google Scholar 

  33. Wang L, Chen H, Yuan M-H, Rivillon S, Klingenberg EH, Li J, Yang RT (2014) Appl Catal B 152–153:162–171

    Article  Google Scholar 

  34. Macleod N, Lambert RM (2002) Appl Catal B 35:269–279

    Article  CAS  Google Scholar 

  35. Haneda M, Chiba K, Takahashi A, Sasaki M, Fujitani T, Hamada H (2007) Catal Lett 118:159–164

    Article  CAS  Google Scholar 

  36. Taylor KC (1984) Automobile catalytic converters. Springer, Berlin, pp 13–16

    Book  Google Scholar 

  37. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120(24):6024–6036

    Article  CAS  Google Scholar 

  38. Sato S, Takahashi R, Sodesawa T, Koubata M (2005) Appl Catal A 284:247–251

    Article  CAS  Google Scholar 

  39. Tamai T, Haneda M, Fujitani T, Hamada H (2007) Catal Commun 8:885–888

    Article  CAS  Google Scholar 

  40. Tanabe K, Misono M, Ono Y, Hattori H (1989) New solid acids and bases. Elsevier, Amsterdam

    Google Scholar 

  41. Long RQ, Yang RT (2000) J Catal 194:80–90

    Article  CAS  Google Scholar 

  42. Li J, Wu GJ, Guan NJ, Li LD (2012) Catal Commun 24:38–44

    Article  Google Scholar 

  43. Yoshinari T, Sato K, Haneda M, Kintaichi Y, Hamada H (2001) Catal Commun 2:155–158

    Article  CAS  Google Scholar 

  44. Haneda M, Fujitani T, Hamada H (2006) J Mol Catal A 256:143–148

    Article  CAS  Google Scholar 

  45. Fogler HS (2005) Elements of chemical reaction engineering. Prentice Hall, Englewood Cliff Ch12

    Google Scholar 

  46. Satterfield CN (1980) Heterogeneous catalysis in practice. McGraw-Hill, New York Ch11

    Google Scholar 

  47. Olympiou GG, Efstathiou AM (2011) Chem Eng J 170:424–432

    Article  CAS  Google Scholar 

  48. Vikulov KA, Andreini A, Poels EK, Bliek A (1994) Catal Lett 25:49–54

    Article  CAS  Google Scholar 

  49. Lian Z, Liu F, He H, Shi X, Mo J, Wu Z (2014) Chem Eng J 250:390–398

    Article  CAS  Google Scholar 

  50. Voorhoeve RJH, Trimble LE (1978) J Catal 54:269–280

    Article  CAS  Google Scholar 

  51. Dumplemann R, Cant NW, Trimm DL (1996) J Catal 162:96–103

    Article  Google Scholar 

  52. Chen JP, Yang RT (1990) J Catal 125:411–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Air Products and Chemicals for funding of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph T. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Wang, L., Rivillon, S. et al. SCR of Nitric Oxide by Hydrogen over Pd and Ir Based Catalysts with Different Supports. Catal Lett 145, 1491–1499 (2015). https://doi.org/10.1007/s10562-015-1560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1560-1

Keywords

Navigation