Ligand-free Gold Nanoparticles as a Reference Material for Kinetic Modelling of Catalytic Reduction of 4-Nitrophenol

Abstract

The reduction of 4-nitrophenol by sodium borohydride is a common model reaction to test the catalytic activity of metal nanoparticles. As all reaction steps proceed solely on the surface of the metal nanoparticles (Langmuir–Hinshelwood model), ligand-coverage of metal nanoparticles impedes the merging of theory and experiment. Therefore we analyzed the catalytic activity of bare gold nanoparticles prepared by laser ablation in liquid without any stabilizers or ligands. The catalytic reaction is characterized by a full kinetic analysis including 4-hydroxylaminophenol as an intermediate species. Excellent agreement between theory and experiment is found. Moreover, the suspension of the nanoparticles remains stable. Hence, ligand-free nanoparticles can be used as a reference material for mechanistic studies of catalytic reactions. In addition, the analysis shows that gold nanoparticles synthesized by laser ablation are among the most active catalysts for this reaction.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845

    Article  CAS  Google Scholar 

  2. 2.

    Goesmann H, Feldmann C (2010) Angew Chem Int Ed 49:1362

    Article  CAS  Google Scholar 

  3. 3.

    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  4. 4.

    Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374

    Article  CAS  Google Scholar 

  5. 5.

    Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Chem Soc Rev 41:5577

    Article  CAS  Google Scholar 

  6. 6.

    Wunder S, Lu Y, Albrecht M, Ballauff M (2011) ACS Catal 1:908

    Article  CAS  Google Scholar 

  7. 7.

    Kaiser J, Leppert L, Welz H, Polzer F, Wunder S, Wanderka N, Albrecht M, Lunkenbein T, Breu J, Kummel S, Lu Y, Ballauff M (2012) Phys Chem Chem Phys 14:6487

    Article  CAS  Google Scholar 

  8. 8.

    Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) J Phys Chem C 114:8814

    Article  CAS  Google Scholar 

  9. 9.

    Fenger F, Fertitta E, Kirmse H, Thuenemann AF, Rademann K (2012) Phys Chem Chem Phys 14:9343

    Article  CAS  Google Scholar 

  10. 10.

    Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237

    Article  CAS  Google Scholar 

  11. 11.

    Haber F (1898) Elektrochem. Angew Phys Chem 22:506

    Google Scholar 

  12. 12.

    Blaser HU (2006) Science 313:313

    Article  Google Scholar 

  13. 13.

    Corma A, Serna P (2006) Science 313:332

    Article  CAS  Google Scholar 

  14. 14.

    Corma A, Concepcion P, Serna P (2008) Angew Chem 119:7404

    Article  Google Scholar 

  15. 15.

    Layek K, Lakshmi Kantam M, Shirai M, Nishio-Hamane D, Sasaki T, Maheswarana H (2012) Green Chem 14:3164

    Article  CAS  Google Scholar 

  16. 16.

    Marx S, Baiker A (2009) J Phys Chem C 113:6191

    Article  CAS  Google Scholar 

  17. 17.

    Mays CW, Vermaak JS, Kuhlmann-Wilsdorf D (1968) Surf Sci 12:134

    Article  CAS  Google Scholar 

  18. 18.

    Nanda KK, Maisels A, Kruis FE (2008) J Phys Chem C 112:13488

    Article  CAS  Google Scholar 

  19. 19.

    Via GH, Drake KF, Meitzner G, Lytle FW, Sinfelt JH (1990) Catal Lett 5:25

    Article  CAS  Google Scholar 

  20. 20.

    Vanithakumari SC, Nanda KK (2008) Phys Lett A 372:6930

    Article  CAS  Google Scholar 

  21. 21.

    King AG, Keswani ST (1994) J Am Ceram Soc 77:769

    Article  CAS  Google Scholar 

  22. 22.

    Gu Z, Xiang X, Fan G, Li F (2008) J Phys Chem C 112:18459

    Article  CAS  Google Scholar 

  23. 23.

    Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W (2012) Adv Funct Mater 22:1333

    Article  Google Scholar 

  24. 24.

    Yan Z, Chrisey DB (2012) J Photochem Photobiol C 13:204

    Article  CAS  Google Scholar 

  25. 25.

    Amendola V, Meneghetti M (2013) Phys Chem Chem Phys 15:3027

    Article  CAS  Google Scholar 

  26. 26.

    Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y (2012) Angew Chem Int Ed 51:2229

    Article  CAS  Google Scholar 

  27. 27.

    Wu S, Kaiser J, Guo X, Li L, Lu Y, Ballauff M (2012) Ind Eng Chem Res 51:5608

    Article  CAS  Google Scholar 

  28. 28.

    Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A (2014) J Phys Chem C 118:18618

    Article  CAS  Google Scholar 

  29. 29.

    Liu Y, Jia CJ, Yamasaki J, Terasaki O, Schüth F (2010) Angew Chem Int Ed 49:5771

    Article  CAS  Google Scholar 

  30. 30.

    Lopez-Sanchez JA, Dimitratos N, Hammond C, Brett GL, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins RL, Carley AF, Knight D, Kiely CJ, Hutchings GJ (2011) Nat Chem 3:551

    Article  CAS  Google Scholar 

  31. 31.

    Balasubramanian SK, Yang L, Yung LL, Ong CN, Ong WY, Yu LE (2010) Biomaterials 31:9023

    Article  CAS  Google Scholar 

  32. 32.

    Beck A, Horvath A, Schay Z, Stefler G, Koppany Z, Sajo I, Geszti O, Guczi L (2007) Top Catal 44:115

    Article  CAS  Google Scholar 

  33. 33.

    Menard LD, Xu F, Nuzzo RG, Yang JC (2006) J Catal 243:64

    Article  CAS  Google Scholar 

  34. 34.

    Barcikowski S, Compagnini G (2013) Phys Chem Chem Phys 15:3022

    Article  CAS  Google Scholar 

  35. 35.

    Zhang J, Chen G, Chaker M, Rosei F, Ma (2013) Appl Cat B 107:132–133

    Google Scholar 

  36. 36.

    Menendez-Manjon A, Jakobi J, Schwabe K, Krauss JK, Barcikowski S (2009) J Laser Micro/Nanoeng 4:95

    Article  CAS  Google Scholar 

  37. 37.

    Muto H, Yamada K, Miyajima K, Mafune F (2007) J Phys Chem C 111:17221

    Article  CAS  Google Scholar 

  38. 38.

    Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) J Phys Chem B 108:16864

    Article  CAS  Google Scholar 

  39. 39.

    Wagener P, Schwenke A, Barcikowski S (2012) Langmuir 28:6132

    Article  CAS  Google Scholar 

  40. 40.

    Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J (2010) ACS Nano 4:7078

    Article  CAS  Google Scholar 

  41. 41.

    Wang Y, Wie G, Zhang W, Jiang X, Zheng P, Shi L, Dong (2007) J Mol Catal A 266:233

    Article  CAS  Google Scholar 

  42. 42.

    Zhang M, Liu L, Wu C, Fu G, Zhao H, He B (2007) Polymer 48:1989

    Article  CAS  Google Scholar 

  43. 43.

    Han J, Li L, Guo R (2010) Macromolecules 43:10636

    Article  CAS  Google Scholar 

  44. 44.

    Liu J, Qin G, Raveendran P, Ikushima Y (2006) Chem Eur J 12:2131

    Article  CAS  Google Scholar 

  45. 45.

    Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem C 111:4596

    Article  CAS  Google Scholar 

  46. 46.

    Zhang Y, Liu S, Lu W, Wang L, Tian J, Sun X (2011) Catal Sci Technol 1:1142

    Article  CAS  Google Scholar 

  47. 47.

    Lu W, Ning R, Qin X, Zhang Y, Chang G, Liu S, Luo Y, Sun X (2011) J Hazard Mater 197:320

    Article  CAS  Google Scholar 

  48. 48.

    Murugadoss A, Chattopadhyay A (2008) J Phys Chem C 112:11265

    Article  CAS  Google Scholar 

  49. 49.

    Schrinner M, Polzer F, Mei Y, Lu Y, Haupt B, Ballauff M, Goldel A, Drechsler M, Preussner J, Glatzel U (2007) Macromol Chem Phys 208:1542

    Article  CAS  Google Scholar 

  50. 50.

    Kuroda A, Ishidaa T, Haruta M (2009) J Mol Catal A 298:7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the German federal ministry of education and research (BMBF) within the young investigator competition NanoMatFutur (project INNOKAT, FKZ 03X5523). AZ gratefully acknowledges financial support of the IAS at TUM via the Moessbauer Fellowship. We thank Prof. J. Nakamura (University of Tsukuba) for his support in X-ray diffraction and high resolution transmission electron microscopy and Prof. H. Nienhaus and Dr. U. Hagemann (University of Duisburg-Essen) for their help in X-ray photoelectron spectroscopy.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Matthias Ballauff or Philipp Wagener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1371 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Kaiser, J., Marzun, G. et al. Ligand-free Gold Nanoparticles as a Reference Material for Kinetic Modelling of Catalytic Reduction of 4-Nitrophenol. Catal Lett 145, 1105–1112 (2015). https://doi.org/10.1007/s10562-015-1514-7

Download citation

Keywords

  • Laser ablation in liquid
  • Ligand-free gold nanoparticles
  • Langmuir–Hinshelwood kinetics