Skip to main content
Log in

Influence of Lewis Acidity on Catalytic Activity of the Porous Alumina for Dehydrofluorination of 1,1,1,2-Tetrafluoroethane to Trifluoroethylene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The porous alumina catalysts with different acidity were prepared and tested for dehydrofluorination of 1,1,1,2-tetrafluoroethane to synthesize trifluoroethylene. The XRD, BET, SEM, NH3-TPD and py-IR techniques were used to characterize the alumina catalysts with different calcination temperatures. The porous θ-Al2O3 showed the excellent catalytic performance, with 35.1 % conversion and the selectivity to trifluoroethylene of 99.0 %. The active sites of catalysts for formation of trifluoroethylene are appropriate weak Lewis acid sites, and the strong Lewis acid sites may result in its rapid deactivation, due to the coke or polymerization of trifluoroethylene.

Graphical Abstract

Dehydrofluorination of 1,1,1,2-tetrafluoroethane (CF3CFH2) is a promising route to synthesize trifluoroethylene over θ-Al2O3, the conversion is 35.1 % and the selectivity to trifluoroethylene is 99 % at 450 °C. It was suggested that appropriate number of weak Lewis acid sites was beneficial to the catalysis for dehydrofluorination of CF3CFH2, the weak Lewis acid sites as the active sites of synthesis of trifluoroethylene. On the other hand, the strong Lewis acid sites easily result in deactivation of catalysts derived from the coke or polymerization of trifluoroethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Meng BC, Sun ZY, Ma JP, Cao GP, Yuan WK (2010) Catal Lett 138:68

    Article  CAS  Google Scholar 

  2. Ohnishi R, Wang WL, Ichikawa M (1994) Appl Catal A General 113:29

    Article  CAS  Google Scholar 

  3. Scott SP, Sweetman M, Thomson J, Fitzgerald AG, Sturrocky EJ (1997) J Catal 168:501

    Article  CAS  Google Scholar 

  4. Ueda W, Tomioka S, Morinkawa Y, Sudo M, Ikawa T (1990) Chem Lett 19:879

    Article  Google Scholar 

  5. Shekar SC, Venugopal A, Rama Rao KS, Sai Prasad PS, Srinivas R, Kanta Rao P (1998) Stud Surf Sci Catal 113:391

    Article  CAS  Google Scholar 

  6. Mori T, Yasuoka T, Morikawa Y (2004) Catal Today 88:111

    Article  CAS  Google Scholar 

  7. Liu ZT, Liu L, Wu J, Lu J, Sun P, Song LP, Liu ZW, Dong WS, Gao ZW (2007) Ind Eng Chem Res 46:22

    Article  CAS  Google Scholar 

  8. Shine KP, Sturges WT (2007) Science 315:1804

    Article  CAS  Google Scholar 

  9. Henne S, Shallcross DE, Reimann S, Xiao P, Brunner D, O’Doherty S, Buchmann B (2012) Environ Sci Technol 46:1650

    Article  CAS  Google Scholar 

  10. Qin LB, Han J, Liu L, Yang XL, Kim HJ, Yu F (2013) Fresenius Environ Bull 22:1919

    CAS  Google Scholar 

  11. Huang CQ, Yang B, Yang R, Wei LX, Wang SS, Shan XB, Oi F, Zhang YW, Sheng LS, Hao LQ, Zhou SK, Wang ZY (2005) Chem J Chin Univ 26:2314

    CAS  Google Scholar 

  12. Wu XY, Cong PH, Nanao H, Kobayashi K, Mori S (2002) Langmuir 18:10122

    Article  CAS  Google Scholar 

  13. Wu XY, Cong PH, Mori S (2002) Appl Surf Sci 201:115

    Article  CAS  Google Scholar 

  14. Cong PH, Imai J, Mori S (2001) Wear 24:143

    Google Scholar 

  15. Li GL, Nishiguchi H, Ishihara T, Moro-oka Y, Takita Y (1998) Appl Catal B Environ 16:309

    Article  CAS  Google Scholar 

  16. Li GL, Ishihara T, Nishiguchi H, Moro-oka Y, Takita Y (1996) Chem Lett 7:507

    Article  Google Scholar 

  17. Okazaki S, Toyota S (1972) Nikkashi 1615

  18. Sirlibaev TS, Akramkhodzhaev A, Usmanov KU (1985) J Appl Chem USSR 58:1541

    Google Scholar 

  19. Tojo M, Fukuoka S, Tsukube H (2011) Bull Chem Soc Japan 84:333

    Article  CAS  Google Scholar 

  20. Teinz K, Wuttke S, Börno F, Eicher J, Kemnitz E (2011) J Catal 282:175

    Article  CAS  Google Scholar 

  21. Busca G (2014) Catal Today 226:2

    Article  CAS  Google Scholar 

  22. Jia WZ, Jin LY, Wang YJ, Lu JQ, Luo MF (2011) J Ind Eng Chem 17:615

    Article  CAS  Google Scholar 

  23. Sung DM, Ha Kim Y, Park ED, Yie JE (2010) Res Chem Intermed 36:653

    Article  CAS  Google Scholar 

  24. Kuo J, Bourell DL (1997) J Mater Sci 32:2687

    Article  CAS  Google Scholar 

  25. Du XL, Wang YQ, Su XH, Li JG (2009) Powder Technol 192:40

    Article  CAS  Google Scholar 

  26. Morterra C, Magnacca G (1996) Catal Today 27:497

    Article  CAS  Google Scholar 

  27. Ramis G, Yi L, Busca G (1996) Catal Today 28:373

    Article  CAS  Google Scholar 

  28. Busca G (1999) Phys Chem Chem Phys 1:723

    Article  CAS  Google Scholar 

  29. Sharanda LF, Shimansky AP, Kulik TV, Chuiko AA (1995) Colloids Surf 105:167

    Article  CAS  Google Scholar 

  30. Carre S, Tapin B, Gnep NS, Revel R, Magnoux P (2010) Appl Catal A 372:26

    Article  CAS  Google Scholar 

  31. Weingarten R, Tompsett GA, Conner JWC, Huber GW (2011) J Catal 279:174

    Article  CAS  Google Scholar 

  32. Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H (2002) J Catal 211:1

    Article  CAS  Google Scholar 

  33. Satsuma A, Kamiya Y, Westi Y, Hattori T (2000) Appl Catal A General 194:253

    Article  Google Scholar 

  34. Dambournet D, Eltanamy G, Vimont A, Lavalley JC, Goupil JM, Demourgues A, Durand E, Majimel J, Rudiger S, Kemnitz E, Winfield JM, Tressaud A (2008) Chem Eur J 14:6205

    Article  CAS  Google Scholar 

  35. Neely BD, Carmichael H (1973) J Phys Chem 77:307

    Article  CAS  Google Scholar 

  36. Noble B, Carmichael H, Bumgardner CL (1972) J Phys Chem 76:1680

    Article  CAS  Google Scholar 

  37. Dumesic JA, Fripiat JJ (1997) Top Catal 4:1

    Article  Google Scholar 

  38. Schekler-Nahama F, Clause O, Commereuc D, Saussey J (1998) Appl Catal A General 167:237

    Article  CAS  Google Scholar 

  39. Ishida S, Imamura S, Ren F, Tatematsu Y, Fujimura Y (1992) React Kinet Catal Lett 46:199

    Article  CAS  Google Scholar 

  40. Bi QY, Qian L, Xing LQ, Tao LP, Lu JQ, Luo MF (2009) J Fluorine Chem 130:528

    Article  CAS  Google Scholar 

  41. Macias O, Largo J, Pesquera C, Blanco C, González F (2006) Appl Catal A General 314:23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Shanghai Key Basic Research (Grant No. 11JC1412500), CNPC Inovation Research Funds (2012D-5006-0505) and National Natural Science Foundation of China (51174277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Wu, Q., Lang, X. et al. Influence of Lewis Acidity on Catalytic Activity of the Porous Alumina for Dehydrofluorination of 1,1,1,2-Tetrafluoroethane to Trifluoroethylene. Catal Lett 145, 654–661 (2015). https://doi.org/10.1007/s10562-014-1409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1409-z

Keywords

Navigation