Skip to main content
Log in

Influence of Crystallite Size of TiO2 Supports on the Activity of Dispersed Pt Catalysts in Liquid-Phase Selective Hydrogenation of 3-Nitrostyrene, Nitrobenzene, and Styrene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Supported Pt catalysts were prepared using several kinds of TiO2 supports different in the crystallite size in the range of 10–500 nm and their catalytic activity was tested for the liquid-phase hydrogenation of 3-nitrostyrene, nitrobenzene, and styrene. With Pt on smaller TiO2 crystallites (nanocrystals), the selectivity to vinylaniline was improved in the hydrogenation of 3-nitrostyrene (regioselective hydrogenation) and the selectivity to aniline was promoted in the hydrogenation of a mixture of nitrobenzene and styrene (chemoselective hydrogenation). The effects of TiO2 crystallite size were discussed on the basis of the results of turnover frequency and FTIR of CO adsorbed on dispersed Pt particles. Low coordinated and/or electron-rich Pt sites should be formed on the surface of nanocrystal TiO2 supports. Nanocrystal TiO2 support is an important factor for controlling and improving the catalytic performance of dispersed Pt particles.

Graphical Abstract

Smaller TiO2 crystallites give rougher Pt crystal planes on the surface of Pt particles, beneficial for the hydrogenation of nitro group than vinyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. Wiley-CVH, Weinheim

    Book  Google Scholar 

  2. Karen A, Idriss H (2012) Green Chem 14:260–280

    Article  Google Scholar 

  3. Kim CS, Moon BK, Park JH, Chung ST, Son SM (2003) J Cryst Growth 254:405–410

    Article  CAS  Google Scholar 

  4. Wang C, Deng ZX, Zhang G, Fan S, Li Y (2002) Powder Technol 125:39–44

    Article  CAS  Google Scholar 

  5. Kang M, Kim BJ, Cho SM, Chung CH, Kim BW, Han GY, Yoon KJ (2002) J Mol Catal A 180:125–132

    Article  CAS  Google Scholar 

  6. Nam HD, Lee BH, Kim SJ, Jung CH, Lee JH, Park S (1998) Jpn J Appl Phys 37:4603–4608

    Article  CAS  Google Scholar 

  7. Su C, Hong BY, Tseng CM (2004) Catal Today 96:119–126

    Article  CAS  Google Scholar 

  8. Bessekhouad Y, Robert D, Weber JV (2003) J Photochem Photobiol A Chem 157:47–59

    Article  CAS  Google Scholar 

  9. Alam MJ, Cameron DC (2002) J Sol–Gel Sci Technol 25:137–145

    Article  CAS  Google Scholar 

  10. Kominami H, Kalo JI, Takada Y, Doushi Y, Ohtani B, Nishimoto S, Inoue M, Kera Y (1997) Catal Lett 46:235–240

    Article  CAS  Google Scholar 

  11. Weerachawanasak P, Praserthdam P, Arai M, Panpranot J (2008) J Mol Catal A 279:133–139

    Article  CAS  Google Scholar 

  12. Weerachawanasak P, Mekasuwandumrong O, Arai M, Fujita S, Praserthdam P, Panpranot J (2009) J Catal 262:199–205

    Article  CAS  Google Scholar 

  13. Payakgul W, Mekasuwandumrong O, Pavarajarn V, Praserthdam P (2005) Ceram Int 31:391–397

    Article  CAS  Google Scholar 

  14. Yoshida H, Narisawa S, Fujita S, Liu R, Arai M (2012) Phys Chem Chem Phys 14:4724–4733

    Article  CAS  Google Scholar 

  15. Yoshida H, Kato K, Wang J, Meng X, Narisawa S, Fujita S, Wu Z, Zhao F, Arai M (2011) J Phys Chem C 115:2257–2267

    Article  CAS  Google Scholar 

  16. Corma A, Concepcion P, Serna P (2007) Angew Chem Int Ed 46:7266–7269

    Article  CAS  Google Scholar 

  17. Corma A, Serna P (2006) Science 313:332–334

    Article  CAS  Google Scholar 

  18. Greenler RG, Burch KD, Krezschmar K, Klauser R, Bradshow AM, Hyden BE (1985) Surf Sci 152(153):338–345

    Article  Google Scholar 

  19. Keppers MJ, van der Maas JH (1991) Catal Lett 10:365–374

    Article  Google Scholar 

  20. Brandt RK, Huges MR, Bourget LP, Truszkowska K, Greenler RG (1993) Surf Sci 286:15–25

    Article  CAS  Google Scholar 

  21. Boccuzi F, Chiorino A, Guglielminotti E (1996) Surf Sci 368:264–269

    Article  Google Scholar 

  22. Rasko J (2003) J Catal 217:478–486

    Article  CAS  Google Scholar 

  23. Hadjiivanov KI (1998) J Chem Soc, Faraday Trans 94:1901–1904

    Article  CAS  Google Scholar 

  24. Jung KY, Park SB (1999) J Photochem Photobiol A 127:117–122

    Article  CAS  Google Scholar 

  25. Panpranot J, Kontapakdee K, Praserthdam P (2006) J Phys Chem. B 110:8019–8024

    Article  CAS  Google Scholar 

  26. Boudart M, Djéga-Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions. Princeton Univ, Princeton, p 26

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS–NRCT bilateral program for joint research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Arai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, H., Igarashi, N., Fujita, Si. et al. Influence of Crystallite Size of TiO2 Supports on the Activity of Dispersed Pt Catalysts in Liquid-Phase Selective Hydrogenation of 3-Nitrostyrene, Nitrobenzene, and Styrene. Catal Lett 145, 606–611 (2015). https://doi.org/10.1007/s10562-014-1404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1404-4

Keywords

Navigation