Skip to main content
Log in

Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOx–Al2O3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalysts consisting of Pd nanoparticles supported on highly dispersed TiOx–Al2O3, TaOx–Al2O3, and MoOx–Al2O3 are studied for catalytic quinoline hydrogenation and selective C–N bond cleavage at 275 °C and 20 bar H2. The Pd/MOx–Al2O3 materials exhibit significantly greater aromatic product selectivity and thus 10–15 % less required H2 for a given level of denitrogenation relative to an unmodified Pd/Al2O3 catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2

Similar content being viewed by others

References

  1. Baker RTK, Prestridge EB, Garten RL (1979) J Catal 56:390

    Article  CAS  Google Scholar 

  2. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Science 211:1121

    Article  CAS  Google Scholar 

  3. Davis RJ (2003) J Catal 216:396

    Article  CAS  Google Scholar 

  4. Luck F (1991) Bull Soc Chim Belg 100:781

    Article  CAS  Google Scholar 

  5. Panagiotopoulou P, Kondarides DI (2006) Catal Today 112:49

    Article  CAS  Google Scholar 

  6. Breysse M, Afanasiev P, Geantet C, Vrinat M (2003) Catal Today 86:5

    Article  CAS  Google Scholar 

  7. Do PTM, Foster AJ, Chen JG, Lobo RF (2012) Green Chem 14:1388

    Article  CAS  Google Scholar 

  8. Foster AJ, Do PTM, Lobo RF (2012) Top Catal 55:118

    Article  CAS  Google Scholar 

  9. Gao XT, Wachs IE, Wong MS, Ying JY (2001) J Catal 203:18

    Article  CAS  Google Scholar 

  10. Smith MA, Zoelle A, Yang Y, Rioux RM, Hamilton NG, Amakawa K, Nielsen PK, Trunschke A (2014) J Catal 312:170

    Article  CAS  Google Scholar 

  11. Coperet C (2010) Chem Rev 110:656

    Article  CAS  Google Scholar 

  12. Phillips J, Dumesic JA (1984) Appl Catal 9:1

    Article  CAS  Google Scholar 

  13. Brenner A, Hucul DA (1979) Inorg Chem 18:2836

    Article  CAS  Google Scholar 

  14. Brenner A, Hucul DA (1980) J Am Chem Soc 102:2484

    Article  CAS  Google Scholar 

  15. Li C (2003) J Catal 216:203

    Article  CAS  Google Scholar 

  16. Corma A, Xamena FXLI, Prestipino C, Renz M, Valencia S (2009) J Phys Chem C 113:11306

    Article  CAS  Google Scholar 

  17. Hermans I, Peeters J, Jacobs PA (2008) Top Catal 48:41

    Article  CAS  Google Scholar 

  18. Avenier P, Lesage A, Taoufik M, Baudouin A, De Mallmann A, Fiddy S, Vautier M, Veyre L, Basset JM, Emsley L, Quadrelli EA (2007) J Am Chem Soc 129:176

    Article  CAS  Google Scholar 

  19. Luo Y-R (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton

    Book  Google Scholar 

  20. Avenier P, Taoufik M, Lesage A, Solans-Monfort X, Baudouin A, de Mallmann A, Veyre L, Basset JM, Eisenstein O, Emsley L, Quadrelli EA (2007) Science 317:1056

    Article  CAS  Google Scholar 

  21. Bailey BC, Fan H, Huffman JC, Baik MH, Mindiola DJ (2006) J Am Chem Soc 128:6798

    Article  CAS  Google Scholar 

  22. Gray SD, Smith DP, Bruck MA, Wigley DE (1992) J Am Chem Soc 114:5462

    Article  CAS  Google Scholar 

  23. Massoth FE, Kim SC (2003) Ind Eng Chem Res 42:1011

    Article  CAS  Google Scholar 

  24. Ho TC (1988) Catal Rev Sci Eng 30:117

    Article  CAS  Google Scholar 

  25. Katzer JR, Sivasubramanian R (1979) Catal Rev Sci Eng 20:155

    Article  CAS  Google Scholar 

  26. Sánchez-Delgado RA (2002) Organometallic modeling of the hydrodesulfurization and hydrodenitrogenation reactions. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  27. Furimsky E, Massoth FE (2005) Catal Rev 47:297

    Article  CAS  Google Scholar 

  28. Jian M, Prins R (1998) J Catal 179:18

    Article  CAS  Google Scholar 

  29. Dolce GM, Savage PE, Thompson LT (1997) Energy Fuels 11:668

    Article  CAS  Google Scholar 

  30. Schlatter JC, Oyama ST, Metcalfe JE, Lambert JM (1988) Ind Eng Chem Res 27:1648

    Article  CAS  Google Scholar 

  31. Abe H, Cheung TK, Bell AT (1993) Catal Lett 21:11

    Article  CAS  Google Scholar 

  32. Lee KS, Abe H, Reimer JA, Bell AT (1993) J Catal 139:34

    Article  CAS  Google Scholar 

  33. Stanczyk K, Kim HS, Sayag C, Brodzki D, Djega-Mariadassou G (1998) Catal Lett 53:59

    Article  CAS  Google Scholar 

  34. Eijsbouts S, Debeer VHJ, Prins R (1991) J Catal 127:619

    Article  CAS  Google Scholar 

  35. Shabtai J, Que GH, Balusami K, Nag NK, Massoth FE (1988) J Catal 113:206

    Article  CAS  Google Scholar 

  36. Stein A, Fendorf M, Jarvie TP, Mueller KT, Benesi AJ, Mallouk TE (1995) Chem Mater 7:304

    Article  CAS  Google Scholar 

  37. Tiozzo C, Bisio C, Carniato F, Gallo A, Scott SL, Psaro R, Guidotti M (2013) Phys Chem Chem Phys 15:13354

    Article  CAS  Google Scholar 

  38. Priolkar KR, Bera P, Sarode PR, Hegde MS, Emura S, Kumashiro R, Lalla NP (2002) Chem Mater 14:2120

    Article  CAS  Google Scholar 

  39. Lutzenkirchen-Hecht D, Frahm R (2006) Surf Sci 600:4380

    Article  Google Scholar 

  40. Aleshina LA, Loginova SV (2002) Crystallogr Rep 47:415

    Article  CAS  Google Scholar 

  41. Karroua M, Matralis H, Grange P, Delmon B (1993) J Catal 139:371

    Article  CAS  Google Scholar 

  42. Zhao Y, Czyzniewska J, Prins R (2003) Catal Lett 88:155

    Article  CAS  Google Scholar 

  43. Bataille F, Lemberton JL, Michaud P, Perot G, Vrinat M, Lemaire M, Schulz E, Breysse M, Kasztelan S (2000) J Catal 191:409

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the ACS Petroleum Research Fund and the DOE Office of Basic Sciences Grants SC-0006718 (JMN) and 86ER1311 (MB, TJM) for funding. Funding for JTM was provided by Chemical Sciences, Geosciences and Biosciences Division, U.S. Department of Energy, under contract DE-AC0-06CH11357. Funding for CPC was provided as part of participation in the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. The authors also acknowledge Z. Bo, Dr. C. Downing, and Dr. C.-C. Yang for technical assistance, and Dr. N. M. Schweitzer for helpful discussions. Portions of this work were conducted at the MRCAT at Sector 10 of the APS. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Use of the APS, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. This work made use of the EPIC facility (NUANCE Center - Northwestern University), which has received support from the MRSEC program (NSF DMR-0520513) at the Materials Research Center, Nanoscale Science and Engineering Center (EEC-0118025/003), both programs of the NSF; the State of Illinois; and Northwestern University. This work made use of the J.B. Cohen X-Ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. This work made use of the Keck-II facility (NUANCE Center - Northwestern University), which has received support from the W. M. Keck Foundation, Northwestern’s Institute for Nanotechnology’s NSF-sponsored Nanoscale Science & Engineering Center (EEC-0118025/003), both programs of the National Science Foundation; the State of Illinois; and Northwestern University. NMR was performed in the Northwestern University IMSERC facility supported by the NSF under grant DMR-0521267. The CleanCat Core facility acknowledges funding from the Department of Energy (DE-SC0001329) used for the purchase of the GCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin M. Notestein.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachrach, M., Morlanes-Sanchez, N., Canlas, C.P. et al. Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOx–Al2O3 . Catal Lett 144, 1832–1838 (2014). https://doi.org/10.1007/s10562-014-1346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1346-x

Keywords

Navigation