Advertisement

Catalysis Letters

, Volume 144, Issue 7, pp 1164–1169 | Cite as

Probing the Catalytic Function of External Acid Sites Located on the MFI Nanosheet for Conversion of Methanol to Hydrocarbons

  • Wookdong Kim
  • Ryong RyooEmail author
Article

Abstract

The surfactant-directed MFI zeolite nanosheet of 2.5-nm thickness has been re-investigated to clarify whether the catalytic function in the methanol-to-hydrocarbon (MTH) reaction originates from acid sites located solely in the internal micropores or also on the external surfaces. Two catalytic reactions were measured after all acid sites on the external surfaces were poisoned with triphenylphospine oxide. One reaction was the catalytic cracking of triisopropylbenzene, which can occur only on external surfaces. This reaction was completely killed by poisoning. The second reaction was MTH conversion. Unlike the catalytic cracking of triisopropylbenzene, the MTH reaction proceeded at the same rate, even when the external acid sites were poisoned. The result indicated that the MTH reaction occurred inside the internal pores, not at the external surfaces. This information will be useful for understanding MTH catalysis of other hierarchical zeolites.

Graphical Abstract

Keywords

Methanol to hydrocarbon Zeolite catalyst External acid sites Hierarchical zeolite MFI zeolite nanosheet 31P NMR 

Notes

Acknowledgments

This work was supported by Institute for Basic Science (IBS) [CA1401].

Supplementary material

10562_2014_1274_MOESM1_ESM.doc (713 kb)
Supplementary material 2 (DOC 713 kb)

References

  1. 1.
    Stöcker M (1999) Microporous Mesoporous Mater 29:3CrossRefGoogle Scholar
  2. 2.
    Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed 51:5810CrossRefGoogle Scholar
  3. 3.
    Teketel S, Svelle S, Lillerud KP, Olsbye U (2009) ChemCatChem 1:78CrossRefGoogle Scholar
  4. 4.
    Teketel S, Skistad W, Benard S, Olsbye U, Lillerud KP, Beato P, Svelle S (2012) ACS Catal 2:26CrossRefGoogle Scholar
  5. 5.
    Haw JF, Song W, Marcus DM, Nicholas JB (2003) Acc Chem Res 36:317CrossRefGoogle Scholar
  6. 6.
    Dahl IM, Kolboe S (1993) Catal Lett 20:329CrossRefGoogle Scholar
  7. 7.
    Dahl IM, Kolboe S (1996) J Catal 161:304CrossRefGoogle Scholar
  8. 8.
    Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud KP, Kolboe S, Bjørgen M (2006) J Am Chem Soc 128:14770CrossRefGoogle Scholar
  9. 9.
    Fu H, Song W, Haw JF (2001) Catal Lett 76:89CrossRefGoogle Scholar
  10. 10.
    Schulz H (2010) Catal Today 154:183CrossRefGoogle Scholar
  11. 11.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Nature 461:246CrossRefGoogle Scholar
  12. 12.
    Kim J, Choi M, Ryoo R (2010) J Catal 269:219CrossRefGoogle Scholar
  13. 13.
    Shetti VN, Kim J, Srivastava R, Choi M, Ryoo R (2008) J Catal 254:296CrossRefGoogle Scholar
  14. 14.
    Seo Y, Cho K, Jung Y, Ryoo R (2013) ACS Catal 3:713CrossRefGoogle Scholar
  15. 15.
    Kim JC, Cho K, Ryoo R (2014) Appl Catal A 470:420CrossRefGoogle Scholar
  16. 16.
    Kim J, Kim W, Seo Y, Kim JC, Ryoo R (2013) J Catal 301:187CrossRefGoogle Scholar
  17. 17.
    Chen CSH, Schramm SE (1996) Microporous Mater 7:125CrossRefGoogle Scholar
  18. 18.
    Hibino T, Niwa M, Murakami Y (1991) J Catal 128:551CrossRefGoogle Scholar
  19. 19.
    Kim JH, Ishida A, Okajima M, Niwa M (1996) J Catal 161:387CrossRefGoogle Scholar
  20. 20.
    Verheyen E, Jo C, Kurttepeli M, Vanbutsele G, Gobechiya E, Korányi TI, Bals S, Tendeloo GV, Ryoo R, Kirschhock CEA, Martens JA (2013) J Catal 300:70CrossRefGoogle Scholar
  21. 21.
    Bleken BTL, Wragg DS, Arstad B, Gunnæs AE, Mouzon J, Helveg S, Lundegaard LF, Beato P, Bordiga S, Olsbye U, Svelle S, Lillerud KP (2013) Top Catal 56:558CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ChemistryKAISTDaejeonKorea
  2. 2.Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)DaejeonKorea

Personalised recommendations