Skip to main content
Log in

Hydrothermally Stable Fe–W–Ti SCR Catalysts Prepared by Deposition–Precipitation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Fe/TiO2 based catalysts were prepared by incipient wetness impregnation and deposition–precipitation (DP). The catalysts were characterized by activity measurements, N2 physisorption, X-ray powder diffraction, electron paramagnetic resonance spectroscopy, energy dispersive X-ray spectroscopy, H2-temperature programmed reduction and NH3-temperature programmed desorption. The 3 wt% Fe–10 wt% WO3/TiO2 (3Fe–10WTi-DP) catalyst prepared by DP using ammonium carbamate as a precipitating agent was found to be the most active and hydrothermally stable with 11 vol% H2O in air at 650 °C for 3 h. The hydrothermal stability of the catalyst can be attributed to the retained crystal structure, and mild change in acidic and redox properties of the catalyst. Furthermore, hydrothermal stability of the 3Fe–10WTi-DP catalyst is competitive with that of 3Fe–ZSM-5 and much better than 3V2O5–10WO3–TiO2 catalysts.

Graphical Abstract

Relative SCR activity of catalysts at 450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bosch H, Janssen F (1988) Catal Today 2:489–506

    Article  Google Scholar 

  2. Alemany LJ, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F (1995) J Catal 155:117–130

    Article  CAS  Google Scholar 

  3. Pârvulescu VI, Grange P, Delmon B (1998) Catal Today 46:233–316

    Article  Google Scholar 

  4. Forzatti P (2001) Appl Catal A 222:221–236

    Article  CAS  Google Scholar 

  5. Baidya T, Bernhard A, Elsener M, Kröcher O (2013) Top Catal 56:23–28

    Article  CAS  Google Scholar 

  6. Ma L, Li J, Ke R, Fu L (2011) J Phys Chem C 115:7603–7612

    Article  CAS  Google Scholar 

  7. Jan MT, Kureti S, Hizbullah K, Jan N (2007) Chem Eng Technol 30:1440–1444

    Article  CAS  Google Scholar 

  8. Liu L, Asakura K, Xie P, Wang J, He H (2013) Catal Today 201:131–138

    Article  CAS  Google Scholar 

  9. He C, Wang Y, Cheng Y, Lambert CK, Yang RT (2009) Appl Catal A 368:121–126

    Article  CAS  Google Scholar 

  10. Høj M, Beier MJ, Grunwaldt JD, Dahl S (2009) Appl Catal B 93:166–176

    Article  Google Scholar 

  11. Brandenberger S, Kröcher O, Casapu M, Tissler A, Althoff R (2011) Appl Catal B 101:649–659

    Article  CAS  Google Scholar 

  12. Shwan S, Adams EC, Jamsson J, Skoglundh M (2013) Catal Lett 143:43–48

    Article  CAS  Google Scholar 

  13. Bartholomew CH (2001) Appl Catal A 212:17–60

    Article  CAS  Google Scholar 

  14. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL (2005) Catal Today 100:217–222

    Article  CAS  Google Scholar 

  15. Iwasaki M, Yamazaki K, Shinjoh H (2011) Appl Catal B 102:302–309

    Article  CAS  Google Scholar 

  16. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) Catal Rev-Sci Eng 50:492–531

    Article  CAS  Google Scholar 

  17. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) Appl Catal B 102:441–448

    Article  CAS  Google Scholar 

  18. Iwasaki M, Shinjoh H (2011) Chem Commun 47:3966–3968

    Article  CAS  Google Scholar 

  19. Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190

    Article  CAS  Google Scholar 

  20. Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A (2012) Appl Catal B 127:273–280

    Article  Google Scholar 

  21. Putluru SSR, Riisager A, Fehrmann R (2010) Appl Catal B 97:333–339

    Article  CAS  Google Scholar 

  22. Pecchi G, Reyes P (2003) J Sol–Gel Sci Technol 27:205–214

    Article  CAS  Google Scholar 

  23. Djera S, Tifouti L, Crocool M, Weisweiler W (2004) J Mol Catal A 208:257–265

    Article  Google Scholar 

  24. Putluru SSR, Jensen AD, Riisager A, Fehrmann R (2011) Catal Sci Technol 1:631–637

    Article  CAS  Google Scholar 

  25. Sohn JR, Park MY (1998) Langmuir 14:6140–6145

    Article  CAS  Google Scholar 

  26. Putluru SSR, Mossin S, Riisager A, Fehrmann R (2011) Catal Today 176:292–297

    Article  CAS  Google Scholar 

  27. Kompio PGWA, Brückner A, Hipler F, Auer G, Löffler E, Grünert W (2012) J Catal 286:237–247

    Article  CAS  Google Scholar 

  28. Long RQ, Yang RT (2002) J Catal 207:274–285

    Article  CAS  Google Scholar 

  29. Lee HT, Rhee HK (1999) Catal Lett 61:71–76

    Article  CAS  Google Scholar 

  30. Guzmán-Vargas A, Delahay G, Coq B (2003) Appl Catal B 42:369–379

    Article  Google Scholar 

  31. Putluru SSR, Jensen AD, Riisager A, Fehrmann R (2011) Top Catal 54:1286–1292

    Article  CAS  Google Scholar 

  32. Banić N, Abramović B, Krstić J, Šojić D, Lonćarević D, Cherkezova-Zheleva Z, Guzsvány V (2011) Appl Catal B 107:363–371

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Energinet.dk through the PSO projects 2009-1-10521 and 2013-1-12096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Fehrmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putluru, S.S.R., Schill, L., Mossin, S. et al. Hydrothermally Stable Fe–W–Ti SCR Catalysts Prepared by Deposition–Precipitation. Catal Lett 144, 1170–1177 (2014). https://doi.org/10.1007/s10562-014-1273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1273-x

Keywords

Navigation