Skip to main content
Log in

Iron and Palladium(II) Phthalocyanines as Recyclable Catalysts for Reduction of Nitroarenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Iron(II) and palladium(II) phthalocyanines have been established as recyclable heterogeneous catalysts for the reduction of aromatic nitro compounds to corresponding amines using diphenylsilane/sodium borohydride as hydrogen sources in ethanol. Various reducible functional groups, such as acetyl, ester, cyano, amide, sulphonamide and carboxylic acid etc. were well tolerated, and the methods were applicable up to gram scale. Mechanistic studies showed that reduction of nitro group proceed through direct (nitroso) pathway and possibly iron or palladium phthalocyanines activates nitro group for reduction. FePc and PdPc also catalyzed the generation of hydrogen from the combination of diphenylsilane/sodium borohydride and ethanol.

Graphical Abstract

Iron and palladium (II) phthalocyanines has been established as an efficient recyclable catalytic systems for reduction of nitroarenes with green solvent system. Various nitro substituted aromatics and heteroaromatics has been successfully reduced to corresponding amines in good to excellent yields. The present methods have also been productively applicable for gram scale reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Rylander PN (1985) Hydrogenation Methods. Academic Press, London 104

    Google Scholar 

  2. Nishimura S (2001) Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley, Chichester 315

    Google Scholar 

  3. Adams JP, Paterson JR (2000) J Chem Soc Perkin Trans 1:3695

    Article  Google Scholar 

  4. Kabalka GW, Verma RS (1992) In: Comprehensive Organic Synthesis. Pergamon, Oxford 363

    Google Scholar 

  5. Dale DJ, Dunn PJ, Golighty C, Hughes ML, Levett PC, Pearce AK, Searle PM, Ward G, Wood AS (2000) Org Process Res Dev 4:17

    Article  CAS  Google Scholar 

  6. Brickner SJ, Hutchinson DK, Barbachyn MR, Manninen PR, Ulanowicz DA, Garmon SA, Grega KC, Hendges SK, Toops DS, Ford CW, Zurenko GE (1996) J Med Chem 39:673

    Article  CAS  Google Scholar 

  7. Al-Farhan E, Deininger DD, McGhie S, Callaghan JO, Robertson MS, Rodgers K, Rout SJ, Singh H, Tung RD (1999) PCT Int. Appl. WO99/48885

  8. Prasad A, Sharma ML, Kanwar S, Rathee R, Sharma SD (2005) J Sci Ind Res 64:756

    CAS  Google Scholar 

  9. Blaser HU, Siegrist U, Studer M (2001) In: Fine chemicals through heterogenous catalysis. Wiley-VCH, Weinheim 389

    Google Scholar 

  10. Blaser HU, Steiner H, Studer M (2009) ChemCatChem 1:210

    Article  CAS  Google Scholar 

  11. Corma A, Serna P, Concepcion P, Calvino J (2008) J Am Chem Soc 130:8748

    Article  CAS  Google Scholar 

  12. Doxsee KM, Feigel M, Stewart KD, Canary JW, Knobler CB, Cram DJ (1987) J Am Chem Soc 109:3098

    Article  CAS  Google Scholar 

  13. Tormo J, Hays DS, Fu GC (1998) J Org Chem 63:5296; c) Zhou Y, Li J, Liu H, Zhao Z, Jiang H (2006). Tetrahedron Lett 47:8511

    Google Scholar 

  14. Sharma U, Kumar P, Kumar N, Kumar V, Singh B (2010) Adv Synth Catal 352:1834

    Article  CAS  Google Scholar 

  15. Sahiner N, Ozay H, Ozay O, Aktas N (2010) Appl Catal B Env 101:137

    Article  CAS  Google Scholar 

  16. Matthews JM, Greco MN, Hecker LR, Hoekstra WJ, Rade-Gordon P, de Garavilla L, Demarest KT, Ericson K, Gunnet KW, Hageman W, Look R, Moore JB, Maryanoff BE (2003) Bioorg Med Chem Lett 13:753

    Article  CAS  Google Scholar 

  17. Kim Y, Nam NH, You YJ, Ahn BZ (2002) Bioorg Med Chem Lett 12:719

    Article  CAS  Google Scholar 

  18. Edwards JP, Zhi L, Pooley CLF, Tegley CM, West SJ, Wang MW, Gottardis MM, Pathirana C, Schrader WT, Jones TK (1998) J Med Chem 41:2779

    Article  CAS  Google Scholar 

  19. Neidlein R, Christen D (1986) Helv Chim Acta 69:1623

    Article  CAS  Google Scholar 

  20. Liu Y, Lu Y, Prashad M, Repic O, Blacklock TJ (2005) Adv Synth Catal 347:217

    Article  CAS  Google Scholar 

  21. Corma A, Conceptcion P, Serna P (2007) Angew Chem Int Ed 46:7266

    Article  CAS  Google Scholar 

  22. He L, Wang LC, Sun H, Ni J, Cao Y, He HY, Fan KN (2009) Angew Chem Int Ed 48:9538

    Article  CAS  Google Scholar 

  23. Corma A, Serna P (2006) Science 313:332

    Article  CAS  Google Scholar 

  24. Corma A, Serna P, Garcia H (2007) J Am Chem Soc 129:6358

    Article  CAS  Google Scholar 

  25. Park S, Lee IS, Park J (2013) Org Biomol Chem 11:395

    Article  CAS  Google Scholar 

  26. Mitsudome T, Kaneda K (2013) Green Chem 15:2636

    Article  CAS  Google Scholar 

  27. Zhang Y, Cui X, Shi F, Deng Y (2012) Chem Rev 112:2467

    Article  CAS  Google Scholar 

  28. Stratakis M, Garcia H (2012) Chem Rev 112:4469

    Article  CAS  Google Scholar 

  29. Gkizis PL, Stratakis M, Lykakis IN (2013) Catal Commun 36:48

    Article  CAS  Google Scholar 

  30. Lipowitz J, Bowman SA (1973) J Org Chem 38:162

    Article  CAS  Google Scholar 

  31. Jovel I, Golomba L, Fleisher M, Popelis J, Grinberga S, Lukevics E (2004) Chem Heterocycl Comp 40:701

    Article  Google Scholar 

  32. Rahaim Jr RJ, Maleczka Jr. RE (2006) Synthesis 3316

  33. Rahaim RJ Jr, Maleczka RE Jr (2005) Org Lett 7:5087

    Article  CAS  Google Scholar 

  34. Banik BK, Mukhopadhyay C, Venkatraman MS, Becker FF (1998) Tetrahedron Lett 39:7243

    Article  CAS  Google Scholar 

  35. Yu C, Liu B, Hu L (2001) J Org Chem 66:919

    Article  CAS  Google Scholar 

  36. Basu MK, Becker FF, Banik FF (2000) Tetrahedron Lett 41:5603

    Article  CAS  Google Scholar 

  37. Spencer J, Anjum N, Patel H, Rathnam RP, Verma J (2007) Synlett 2557

  38. Spencer J, Rathnam RP, Patel H, Anjum N (2008) Tetrahedron 64:10195

    Article  CAS  Google Scholar 

  39. de Noronha RG, Romao CC, Fernandes AJ (2009) J Org Chem 74:6960

    Article  Google Scholar 

  40. Andrianov KA, Sidorov VI, Filimonov MI (1977) Zh Obshch Khim 47:485

    CAS  Google Scholar 

  41. Brinkman HR, Miles WH, Hilborn MD, Smith MC (1996) Synth Commun 26:973

    Article  CAS  Google Scholar 

  42. Fan GY, Zhang L, Fu HY, Yuan ML, Li RX, Chen H, Li XJ (2010) Catal Commun 11:451

    Article  CAS  Google Scholar 

  43. Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:3317

    Article  CAS  Google Scholar 

  44. Gaillard S, Renaud JL (2008) ChemSusChem 1:505

    Article  CAS  Google Scholar 

  45. Junge K, Wendt B, Shaikh N, Beller M (2010) Chem Commun 46:1769

    Article  CAS  Google Scholar 

  46. Pehlivan L, Metay E, Laval S, Dayoub W, Demonchaux P, Mignani G, Lemaire M (2011) Tetrahedron 67:1971

    Article  CAS  Google Scholar 

  47. Cantillo D, Baghbanzadeh M, Kappe CO (2012) Angew Chem Int Ed 51:10190

    Article  CAS  Google Scholar 

  48. Wienhofer G, Sorribes I, Boddien A, Westerhaus F, Junge K, Junge H, Llusar R, Beller M (2011) J Am Chem Soc 133:12875

    Article  Google Scholar 

  49. Shi Q, Lu R, Lu L, Fu X, Zhao D (2007) Adv Synth Catal 349:1877

    Article  CAS  Google Scholar 

  50. Plietker B (2008) Iron catalysis in organic chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  51. Nahra F, Mace Y, Lambin D, Riant O (2013) Angew Chem Int Ed 52:3208

    Article  CAS  Google Scholar 

  52. Wang DS, Wang DW, Zhou YG (2011) Synlett 947

  53. Bae JW, Cho YJ, Lee SH, Yoon COM, Yoon CM (2000) Chem Commun 1857

  54. Franzoni I, Mazet C (2014) Org Biomol Chem 12:233

    Article  CAS  Google Scholar 

  55. Chen QA, Ye ZS, Duan Y, Zhou YG (2013) Chem Soc Rev 42:497

    Article  CAS  Google Scholar 

  56. Sorokin AB (2013) Chem Rev 13:8152

    Article  Google Scholar 

  57. Verma PK, Sharma U, Bala M, Kumar N, Singh B (2013) RSC Adv 3:895

    Article  CAS  Google Scholar 

  58. Sharma U, Kumar N, Verma PK, Kumar V, Singh B (2012) Green Chem 14:2289

    Article  CAS  Google Scholar 

  59. Sharma U, Verma PK, Kumar N, Kumar V, Bala M, Singh B (2011) Chem Eur J 17:5903

    Article  CAS  Google Scholar 

  60. Bala M, Verma PK, Kumar N, Sharma U, Singh B (2013) Canad J Chem 91:732

    Article  CAS  Google Scholar 

  61. Bala M, Verma PK, Sharma U, Kumar N, Singh B (2013) Green Chem 15:1687

    Article  CAS  Google Scholar 

  62. Verma PK, Sharma U, Kumar N, Bala M, Kumar V, Singh B (2012) Catal Lett 142:907

    Article  CAS  Google Scholar 

  63. Kumar V, Sharma U, Verma PK, Kumar N, Singh B (2012) Adv Synth Catal 354:870

    Article  CAS  Google Scholar 

  64. Kantam ML, Bandyopadhyay P, Rahman A (1998) J Mol Catal A: Chem 133:293

    Article  CAS  Google Scholar 

  65. McLaughlin MA, Barnes DM (2006) Tetrahedron Lett 47:9095

    Article  CAS  Google Scholar 

  66. Tafesh AM, Weiguny J (1996) Chem Rev 96:2035

    Article  CAS  Google Scholar 

  67. Takasaki M, Motoyama Y, Higashi K, Yoon, Mochida I, Nagasimha H (2008) Org Lett 10:1601

    Article  CAS  Google Scholar 

  68. Sorribes I, Wienhofer G, Vicent C, Junge K, Llusar R, Beller M (2012) Angew Chem Int Ed 51:7794

    Article  CAS  Google Scholar 

  69. Westerhaus FA, Jagadeesh RV, Wienhofer G, Pohl MM, Radnik J, Surkus AE, Robeah J, Junge K, Junge H, Nielsen M, Bruckner A, Beller M (2013) Nature Chem 5:537

    Article  CAS  Google Scholar 

  70. Lee JG, Choi KI, Koh HY, Kim Y, Kang Y, Cho YS (2001) Synthesis 81

  71. Chandrasekhar S, Prakash SJ, Rao CL (2006) J Org Chem 71:2196

    Article  CAS  Google Scholar 

  72. Iyer S, Kulkarni GM (2004) Synth Commun 34:721

    Article  CAS  Google Scholar 

  73. He D, Shi H, Wu Y, Xu BO (2007) Green Chem 9:849

    Article  CAS  Google Scholar 

  74. Weekes AA, Westwell AD (2009) Curr Med Chem 16:2430

    Article  CAS  Google Scholar 

  75. Horton DA, Bourne GT, Smythe MY (2003) Chem Rev 103:893

    Article  CAS  Google Scholar 

  76. Kuhler TC, Swanson M, Shcherbuchin V, Larsson H, Mellgard B, Sjostrom JE (1998) J Med Chem 41:1777

    Article  CAS  Google Scholar 

  77. Haber F (1898) Z Elektrochem 22:506

    Google Scholar 

  78. Kruger A, Albrecht M (2012) Chem Eur J 18:652

    Article  Google Scholar 

  79. Mukharjee D, Thompson RR, Ellern A, Sadow AD (2011) ACS Catal 1:698

    Article  Google Scholar 

  80. Weickgenannt A, Mewald M, Muesmann TWT, Oestreich M (2010) Angew Chem Int Ed 49:2223

    Article  CAS  Google Scholar 

  81. Ito H, Takagi K, Miyahara T, Sawamura M (2005) Org Lett 7:3001

    Article  CAS  Google Scholar 

  82. Ito H, Takagi K, Miyahara T, Sawamura M (2005) Org Lett 7:1869

    Article  CAS  Google Scholar 

  83. Khalimon AY, Simionescu R, Nikonov GI (2011) J Am Chem Soc 133:7033

    Article  CAS  Google Scholar 

  84. Luo XL, Crabtree RH (1989) J Am Chem Soc 111:2527

    Article  CAS  Google Scholar 

  85. Bialek B, Lee J (2007) J Korean Phys Soc 51:1366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Director of the institute for providing necessary facilities. Financial support received from CSIR-India (fellowship to P. K. V) and DST under Fast Track Scheme (U. S.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikram Singh.

Additional information

CSIR-IHBT Communication No. 3564.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5981 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P.K., Bala, M., Thakur, K. et al. Iron and Palladium(II) Phthalocyanines as Recyclable Catalysts for Reduction of Nitroarenes. Catal Lett 144, 1258–1267 (2014). https://doi.org/10.1007/s10562-014-1269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1269-6

Keywords

Navigation