Catalysis Letters

, Volume 144, Issue 7, pp 1219–1222 | Cite as

Colloidal Gold Nanoparticles: An Unexpected Catalytic Activity in Aqueous Phase with Dioxygen

  • Hadi Salari
  • Hossein Robatjazi
  • Mohammad Reza Hormozi-Nezhad
  • Mohsen Padervand
  • Mohammad Reza Gholami


Selective oxidations of alkenes were investigated using molecular oxygen in aqueous solution under mild conditions. Colloidal gold nanoparticles are particularly versatile catalysts for oxidation reaction with exceptionally high efficiency and significant selectivity. Gold nanorods (Au NRs) exhibited a slightly enhanced activity compare to gold nanospheres.

Graphical Abstract


Environmental catalysis  Green chemistry  Homogeneous catalysis  Alkenes  Surfactants  Aerobic oxidation 

Supplementary material

10562_2014_1255_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 47 kb)


  1. 1.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Angew Chem Int Ed 48:60–103CrossRefGoogle Scholar
  2. 2.
    Wiley B, Sun Y, Xia Y (2007) Acc Chem Res 40:1067–1076CrossRefGoogle Scholar
  3. 3.
    Herricks T, Chen J, Xia Y (2004) Nano Lett 4:2367–2371CrossRefGoogle Scholar
  4. 4.
    Pastoriza-Santos I, Liz-Marza´n LM (2009) Adv Funct Mater 19:1–10CrossRefGoogle Scholar
  5. 5.
    Sun Y, Mayers B, Herricks T, Xia Y (2003) Nano Lett 3:955–960CrossRefGoogle Scholar
  6. 6.
    Wiley B, Sun Y, Mayers B, Xia Y (2005) Chem Eur J 11:454–463CrossRefGoogle Scholar
  7. 7.
    Xia Y, Li W, Cobley CM, Chen CJ, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Acc Chem Res 44:914–924CrossRefGoogle Scholar
  8. 8.
    Huang X, Neretina S, El-Sayed MA (2009) Adv Mater 21:4880–4910CrossRefGoogle Scholar
  9. 9.
    Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065–4067CrossRefGoogle Scholar
  10. 10.
    Nikoobakht B, El-Sayed MA (2003) Chem Mater 15:1957–1962CrossRefGoogle Scholar
  11. 11.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Coord Chem Rev 249:1870–1901CrossRefGoogle Scholar
  12. 12.
    Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chem Commun 5:544–557CrossRefGoogle Scholar
  13. 13.
    Yu C, Irudayaraj J (2007) Anal Chem 79:572–579CrossRefGoogle Scholar
  14. 14.
    Xiaohua Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  15. 15.
    Parab HJ, Jung C, Lee J, Park HG (2010) Biosens Bioelectron 26:667–673CrossRefGoogle Scholar
  16. 16.
    Wang X, Li Y, Wang H, Fu Q, Peng J, Wang Y, Du J, Zhou Y, Zhan L (2010) Biosens Bioelectron 26:404–410CrossRefGoogle Scholar
  17. 17.
    Singh AK, Senapati D, Wang Sh, Griffin J, Neely A, Candice P, Naylor KhM, Varisli B, Kalluri JR, Ray PC (2009) ACS Nano 3:1906–1912CrossRefGoogle Scholar
  18. 18.
    Sudeep PK, Shibu Joseph ST, Thomas KG (2005) J Am Chem Soc 127:6516–6517CrossRefGoogle Scholar
  19. 19.
    Maltzahn GV, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Cancer Res. doi: 10.1158/0008-5472.CAN-08-4242 Google Scholar
  20. 20.
    Deng X, Min BK, Guloy A, Friend CM (2005) J Am Chem Soc 127:9267–9270CrossRefGoogle Scholar
  21. 21.
    Turner M et al (2008) Nature 454:981–983CrossRefGoogle Scholar
  22. 22.
    Hughes MD et al (2005) Nature 437:1132–1135CrossRefGoogle Scholar
  23. 23.
    Stephen A, Hashmi K, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  24. 24.
    Comotti M, Pina CD, Matarrese R, Rossi M (2004) Angew Chem Int Ed 43:5812–5815CrossRefGoogle Scholar
  25. 25.
    Hosseini-Monfared H, Meyer H, Janiak C (2013) J Mol Catal A 372:72–78CrossRefGoogle Scholar
  26. 26.
    Peixoto de Almeida M, Martins LMDRS, Carabineiro SAC, Lauterbach T, Rominger F, Hashmi ASK, Pombeiro AJL, Figueiredo JL (2013) Catal Sci Tech 3:3056–3069CrossRefGoogle Scholar
  27. 27.
    Yoon B, Hakkinen H, Landman U (2003) J Phys Chem A 107:4066–4071CrossRefGoogle Scholar
  28. 28.
    Gao M, Lyalin A, Takestsugo T (2012) Int J Quantum Chem. doi: 10.1002/qua.24066 Google Scholar
  29. 29.
    Obare SO, Jana NR, Murphy CJ (2001) Nano Lett 1:601–603CrossRefGoogle Scholar
  30. 30.
    Cai Z, Zhu M, Chen J, Shen Y, Zhao J, Tang Y, Chen X (2010) Catal Commun 12:197–201CrossRefGoogle Scholar
  31. 31.
    Yang Z, Kang Q, Ma H, Li C, Lei Z (2004) J Mol Catal A Chem 213:179–269CrossRefGoogle Scholar
  32. 32.
    Tong JH, Zhang Y, Li Z, Xia CG (2006) J Mol Catal A Chem 249:47–52CrossRefGoogle Scholar
  33. 33.
    Weiner H, Trovarelli A, Finke RG (2003) J Mol Catal A Chem 191:217–252CrossRefGoogle Scholar
  34. 34.
    Gittins DI, Caruso FJ (2001) J Phys Chem B 105:6846–6852CrossRefGoogle Scholar
  35. 35.
    Mayya KS, Schoeler B, Caruso F (2003) Adv Funct Mater 13:183–188CrossRefGoogle Scholar
  36. 36.
    Gole A, Murphy C (2005) J Chem Mater 17:1325–1330CrossRefGoogle Scholar
  37. 37.
    Alkilany AM, Thompson LB, Murphy C (2010) J Appl Mater Interfaces 2:3417–3421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hadi Salari
    • 1
  • Hossein Robatjazi
    • 1
  • Mohammad Reza Hormozi-Nezhad
    • 1
    • 2
  • Mohsen Padervand
    • 1
  • Mohammad Reza Gholami
    • 1
  1. 1.Department of ChemistrySharif University of TechnologyTehranIran
  2. 2.Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran

Personalised recommendations