Skip to main content
Log in

Effect of a Chelating Agent on the Physicochemical Properties of TiO2: Characterization and Photocatalytic Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the current study, it was found that the physiochemical properties of TiO2 are effected with formic acid as a chelating agent in a sol–gel process. From XRD studies it was revealed that due to the chelation of formate group with titanium precursor, anatase/brookite mixture of 86:14 is obtained while the control sample which has been prepared without formic acid showed pure anatase at 400 °C. FTIR studies indicated that, the formate group favored a monodentate mode of coordination with titanium precursor under the effect of addition of increasing amount of formic acid, while under the effect of increasing titanium precursor content the formate group is chelated with titanium atoms in a bidentate bridging mode. In addition, from the FTIR study it was demonstrated that increasing the amount of water in the hydrolysis step, a reduction in the intensity of the carboxylate (COO) stretches was observed indicating that the titania formate bridging complex becomes weaker, resulting in a weakened titanium gel network structure which could readily collapse during calcination favoring early rutile formation. Raman spectroscopy showed that as a result of sample composite nature and presence of oxygen vacancies as demonstrated by PL analysis causes the broadening and frequency shifting of the Raman bands. Photocatalytic studies demonstrated that the formic acid modified sample composed of anatase/rutile mixture of 94:6 calcined at 600 °C show significantly higher catalytic activity compared to the control sample prepared under similar conditions. Kinetic analysis show first order kinetics for the decomposition of methylene blue, a rate constant (kapp) of 0.074 min−1 was obtained with anatase/rutile (94:6) mixture which is even higher than the Degussa P25 (0.067 min−1).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ART:

Anatase to rutile transformation temperature

Δ:

Delta represent the difference in asymmetric (ν(COO−)as) and symmetric carboxylate (–ν(COO−)s)) stretches

C:

Reaction concentration

Co :

Concentration of organic pollutant

Kapp :

Apparent reaction rate constant

CB:

Conduction band

VB:

Valance band

FWHM:

Full width at half maximum

α:

Absorption coefficient

Eu :

Urbach energy

hυ:

Photon energy

λ:

Wavelength

References

  1. Ying L, Hon LS, White T, Withers R, Hai LB (2003) Mater Trans 44:1328

    Article  CAS  Google Scholar 

  2. Sahni S, Reddy SB, Murty BS (2007) Mater Sci Eng, A 452–453:758

    Article  Google Scholar 

  3. Xu N, Shi Z, Fan Y, Dong J, Shi J, Hu MZC (1999) J Ind Eng Chem Res 38:373

    Article  CAS  Google Scholar 

  4. Mao L, Li Q, Dang H, Zhang Z (2005) Mater Res Bull 40:201

    Article  CAS  Google Scholar 

  5. Zhu J, Zhang J, Chen F, Iino K, Anpo M (2005) Top Catal 35:261

    Article  CAS  Google Scholar 

  6. Zhang D, Qi L, Ma J, Cheng H (2002) J Mater Chem 12:3677

    Article  CAS  Google Scholar 

  7. Schaefer DW, Martin JE, Wiltzius P, Cannell DS (1984) Aggregation of colloidal silica. In: Family F, Landau DP (eds) Kinetics of aggregation and gelation. Elsevier, Amsterdam

    Google Scholar 

  8. Yu Y, Xu D (2007) J Appl Catal B Environ 73:166

    Article  CAS  Google Scholar 

  9. Nguyen TV, Choi DJ, Yang OB (2005) Res Chem Intermed 31:483

    Article  CAS  Google Scholar 

  10. Suresh C, Biju V, Mukundan P, Warrier KGK (1998) Polyhedron 17:3131

    Article  CAS  Google Scholar 

  11. Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) J Mater Chem 11:1694

    Article  CAS  Google Scholar 

  12. Zhang H, Banfield JF (2000) J Phys Chem B 104:3481

    Article  CAS  Google Scholar 

  13. Chen Z, Zhao G, Li H, Han G, Song B (2009) J Am Ceram Soc 92:1024

    Article  CAS  Google Scholar 

  14. Liu Y, Wang Z, Wang W, Huang W (2014) J. Cataly 310:16

    Article  CAS  Google Scholar 

  15. Bischoff BL, Anderson MA (1995) Chem Mater 7:1772

    Article  CAS  Google Scholar 

  16. Zelenak V, Vargova Z, Gyoryova K (2007) Spectrochim Acta Mol Biomol Spectros 66:262

    Article  CAS  Google Scholar 

  17. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordinated compounds, part b: application in coordination, organometallic and bioinorganic chemistry. John Wiley and Sons Inc., Hoboken

    Google Scholar 

  18. Nolan NT, Seery MK, Pillai SC (2009) J Phys Chem C 113:16151

    Article  CAS  Google Scholar 

  19. Coronado DR, Gattorno GR, Pesqueira MEE, Cab C, Coss R, Oskam G (2008) Nanotechnology 19:145605

    Article  Google Scholar 

  20. Valencia S, Marin JM, Restrepo G (2010) Open Mater Sci J 4:9

    CAS  Google Scholar 

  21. Deng H, Hossenlopp JM (2004) J Phys Chem B 109:66

    Article  Google Scholar 

  22. Mathpal MC, Tripathi AK, Singh MK, Gairola SP, Pandey SN, Agarwal A (2013) Chem Phys Lett 555:182

    Article  CAS  Google Scholar 

  23. Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646

    Article  CAS  Google Scholar 

  24. Bouras P, Stathatos E, Lianos P (2007) Appl Catal B Environ 73:51

    Article  CAS  Google Scholar 

  25. Wang Y, Zhang S, Wu X (2004) Nanotechnology 15:1162

    Article  CAS  Google Scholar 

  26. Choudhury B, Dey M, Choudhury A (2013) Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Appl Nanosci. doi:10.1007/s13204-013-0226-9

    Google Scholar 

  27. Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar N (2005) J Fluorine Chem 126:69

    Article  CAS  Google Scholar 

  28. Khan H, Berk D (2013) J Sol-Gel Sci Technol 68:1

    Article  Google Scholar 

  29. Xu J, Shi S, Li L, Zhang X, Wang Y, Chen X, Wang J, Lv L, Zhang F, Zhong W (2010) J Appl Phys 107:053910

    Article  Google Scholar 

  30. Zhou J, Takeuchi M, Ray AK, Anpo M, Zhao XS (2007) J Colloid Interface Sci 311:497

    Article  CAS  Google Scholar 

  31. Choi HC, Jung YC, Kim SB (2005) Vib Spectr 37:33

    Article  CAS  Google Scholar 

  32. Yan J, Wu G, Guan N, Li L, Li Z, Cao X (2013) Phys Chem Chem Phys 15:10978

    Article  CAS  Google Scholar 

  33. Jensen H, Pedersen JH, Jorgensen JE, Pedersen JS, Joensen KD, Iversen SB, Sogaard EG (2006) J Exp Nanosci 1:355

    Article  CAS  Google Scholar 

  34. Yu J, Yu H, Cheng B, Zhou M, Zhao X (2006) J Mol Catal A: Chem 253:112

    Article  CAS  Google Scholar 

  35. Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V (2007) J Phys Chem C 111:13222

    Article  CAS  Google Scholar 

  36. Chen DC, Wang Z, Liao ZF, Maic YL, Zhang MQ (2007) Polym Test 26:202

    Article  CAS  Google Scholar 

  37. Asenjo NG, Santamaria R, Blanco C, Granda M, Alvarez P, Menendez R (2013) Carbon 55:62

    Article  CAS  Google Scholar 

  38. Qourzal S, Barka N, Tamimi T, Assabbane A, Ichou YA (2008) Appl Catal A Gen 334:386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Natural Sciences and Engineering Research Council (NSERC) of Canada for the financial support provided for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Berk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2027 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, H., Berk, D. Effect of a Chelating Agent on the Physicochemical Properties of TiO2: Characterization and Photocatalytic Activity. Catal Lett 144, 890–904 (2014). https://doi.org/10.1007/s10562-014-1233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1233-5

Keywords

Navigation