Skip to main content
Log in

Depletion NO x Made Easy by Nitrogen Doped Graphene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The integrated mechanism of the catalytic oxidation of NO by N2O on the metal-free support of nitrogen doped graphene (NG) is investigated using density function theory calculations. The results indicate that the N2O can be intensively adsorbed on NG support, while the NO, N2, NO2 are all weakly adsorbed. In the oxidation process, a two-step mechanism is identified: the dissociation of N2O followed by the oxidation of NO with the dissociative O-atom. The present work suggests that the NG support, as a high-efficient and metal-free catalyst, is one of the promising candidates for removing the nitrogen oxides gases exhaust.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen Y, Liu Y-J, Wang H-X, Zhao J-X, Cai Q, Wang X-Z, Ding Y (2013) ACS Appl Mater Interfaces 5:5994

    Article  CAS  Google Scholar 

  2. Després J, Elsener M, Koebel M, Kröcher O, Schnyder B, Wokaun A (2004) Appl Catal B 50:73

    Article  Google Scholar 

  3. Parvulescu V, Grange P, Delmon B (1998) Catal Today 46:233

    Article  CAS  Google Scholar 

  4. Ravishankara A, Daniel JS, Portmann RW (2009) Science 326:123

    Article  CAS  Google Scholar 

  5. Qi G, Yang RT (2003) Appl Catal B 44:217

    Article  CAS  Google Scholar 

  6. Qi G, Yang RT, Chang R (2004) Appl Catal B 51:93

    Article  CAS  Google Scholar 

  7. Topsoe N, Topsoe H, Dumesic J (1995) J Catal 151:226

    Article  CAS  Google Scholar 

  8. Koebel M, Elsener M, Kleemann M (2000) Catal Today 59:335

    Article  CAS  Google Scholar 

  9. Bambauer A, Brantner B, Paige M, Novakov T (1994) Atmos Environ 28:3225

    Article  CAS  Google Scholar 

  10. Chan WH, Nordstrom RJ, Calvert JG, Shaw JH (1976) Sci Technol 10:674

    Article  CAS  Google Scholar 

  11. Mochida I, Kawabuchi Y, Kawano S, Matsumura Y, Yoshikawa M (1997) Fuel 76:543

    Article  CAS  Google Scholar 

  12. Philips DA, Dasgupta PK (1987) Sep Sci Technol 22:1255

    Article  CAS  Google Scholar 

  13. Ovesson S, Lundqvist B, Schneider W, Bogicevic A (2005) Phys Rev B 71:115406

    Article  Google Scholar 

  14. Sousa JP, Pereira MF, Figueiredo JL (2011) Catal Today 176:383

    Article  CAS  Google Scholar 

  15. Xu Q-Q, Yang H-Q, Gao C, Hu C-W (2013) Struct Chem 24:13

    Article  CAS  Google Scholar 

  16. Yang H, Liu H, Zhou K, Yan Z-Q, Zhao R, Liu Z-H, Liu Z-H, Qiu J-R (2012) J Fuel Chem Technol 40:1002

    Article  CAS  Google Scholar 

  17. Yakovlev AL, Zhidomirov GM, van Santen RA (2001) Catal Lett 75:45

    Article  CAS  Google Scholar 

  18. Zhao X, Cong Y, Lv F, Li L, Wang X, Zhang T (2010) Chem Commun 46:3028

    Article  CAS  Google Scholar 

  19. Lv Y-A, Zhuang G-L, Wang J-G, Jia Y-B, Xie Q (2011) Phys Chem Chem Phys 13:12472

    Article  CAS  Google Scholar 

  20. Wang B, Pantelides S (2011) Phys Rev B 83:245403

    Article  Google Scholar 

  21. Zhao J-X, Chen Y, Fu H-G (2012) Theor Chem Acc 131:1

    Article  CAS  Google Scholar 

  22. Groves M, Chan A, Malardier-Jugroot C, Jugroot M (2009) Chem Phys Lett 481:214

    Article  CAS  Google Scholar 

  23. Zhang L, Xia Z (2011) J Phys Chem C 115:11170

    Article  CAS  Google Scholar 

  24. Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) J Mater Chem 20:7491

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  26. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  28. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  29. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  30. Zhu T, Li J, Yip S (2004) Phys Rev Lett 93:025503

    Article  Google Scholar 

  31. Kocher N, Henn J, Gostevskii B, Kost D, Kalikhman I, Engels B, Stalke D (2004) J Am Chem Soc 126:5563

    Article  CAS  Google Scholar 

  32. Momma K, Izumi F (2008) J Appl Crystallogr 41:653

    Article  CAS  Google Scholar 

  33. Chao S, Lu Z, Bai Z, Cui Q, Qiao J, Yang Z, Yang L (2013) Int J Electrochem Sci 8:8786

    CAS  Google Scholar 

  34. Feng Y, Li F, Hu Z, Luo X, Zhang L, Zhou X-F, Wang H-T, Xu J-J, Wang E (2012) Phys Rev B 85:155454

    Article  Google Scholar 

  35. Ni S, Li Z, Yang J (2012) Nanoscale 4:1184

    Article  CAS  Google Scholar 

  36. Girit ÇÖ, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park C-H, Crommie M, Cohen ML, Louie SG (2009) Science 323:1705

    Article  CAS  Google Scholar 

  37. Pedersen TG, Flindt C, Pedersen J, Mortensen NA, Jauho A-P, Pedersen K (2008) Phys Rev Lett 100:136804

    Article  Google Scholar 

  38. Reich S, Maultzsch J, Thomsen C, Ordejon P (2002) Phys Rev B 66:035412

    Article  Google Scholar 

  39. Dai J, Yuan J, Giannozzi P (2009) Appl Phys Lett 95:232105

    Article  Google Scholar 

  40. Klimeš J, Bowler R, Michaelides A (2011) Phys Rev B 83:195131

    Article  Google Scholar 

  41. Wannakao S, Nongnual T, Khongpracha P, Maihom T, Limtrakul J (2012) J Phys Chem C 116:16992

    Article  CAS  Google Scholar 

  42. Song E, Wen Z, Jiang Q (2011) J Phys Chem C 115:3678

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11174070 and 11147006). Z. Lu also acknowledges the support from the China Postdoctoral Science Foundation funded project (Grant No. 2012M521399) and Postdoctoral Research sponsorship in Henan Province (Grant No. 2011038), Foundation for the Key Young Teachers of Henan Normal University and Start-up Foundation for Doctors of Henan Normal University. Parts of the simulations are performed on resources provided by the high-performance computing center of College of Physics and Electronic Engineering in Henan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhansheng Lu or Zongxian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Lu, Z., Tang, Y. et al. Depletion NO x Made Easy by Nitrogen Doped Graphene. Catal Lett 144, 1016–1022 (2014). https://doi.org/10.1007/s10562-014-1232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1232-6

Keywords

Navigation