Skip to main content

Advertisement

Log in

Production of Renewable Hydrogen by Glycerol Steam Reforming Using Ni–Cu–Mg–Al Mixed Oxides Obtained from Hydrotalcite-like Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ni–Cu catalysts derived from hydrotalcite-like compounds were prepared with 20 wt% of NiO and 0, 5, and 10 wt% of CuO, and evaluated in the steam reforming of glycerol. The reaction was performed in a continuous flow reactor with a solution of 10 and 20 vol.% glycerol, at 500 °C and atmospheric pressure. The highest conversion of glycerol (around 100 %) was obtained with Ni catalyst in both solutions. In the gas phase, the higher H2 selectivities were obtained with Cu-containing catalysts: 71 % (Ni5Cu/10 vol.%) and 68 % (Ni10Cu/20 vol.%). The main products formed in the liquid phase were lactic acid, acetol, acetaldehyde and acrolein and a small quantity of acetic acid. Characterization of the spent catalysts revealed that Cu-containing catalysts have greater resistance to carbon formation and the sintering process is not significant, showing that the catalysts prepared exhibit good catalytic stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Int J Hydrog Energy 34:5373

    Article  CAS  Google Scholar 

  2. Zhou CH, Zhao H, Tong DS, Wu LM, Yu WH (2013) Catal Rev Sci Eng 55:369

    Article  CAS  Google Scholar 

  3. Zheng Y, Chen X, Shen Y (2008) Chem Rev 108:5253

    Article  CAS  Google Scholar 

  4. Tan HW, Aziz ARA, Aroua MK (2013) Renew Sust Energy Rev 27:118

    Article  CAS  Google Scholar 

  5. Maglinao RL, He BB (2011) Ind Eng Chem Res 50:6028

    Article  CAS  Google Scholar 

  6. Dunn S (2002) Int J Hydrog Energy 27:235

    Article  CAS  Google Scholar 

  7. Kirtay E (2011) Energy Conv Manag 52:1778

    Article  CAS  Google Scholar 

  8. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964

    Article  CAS  Google Scholar 

  9. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) Appl Catal B 56:171

    Article  CAS  Google Scholar 

  10. Adhikari S, Fernando SD, Haryanto A (2007) Catal Today 129:355

    Article  CAS  Google Scholar 

  11. Sehested J (2006) Catal Today 111:103

    Article  CAS  Google Scholar 

  12. Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F (2010) Appl Catal A 381:1

    Article  CAS  Google Scholar 

  13. Franchini CA, Aranzaez W, de Farias AMD, Pecchi G, Fraga MA (2014) Appl Catal B 147:193

    Article  CAS  Google Scholar 

  14. Cheng CK, Foo SY, Adesina AA (2011) Catal Today 164:268

    Article  CAS  Google Scholar 

  15. Profeti LPR, Ticianelli EA, Assaf EM (2009) Int J Hydrog Energy 34:5049

    Article  CAS  Google Scholar 

  16. Esteban AS, Miguel AD, Raul AC (2010) Int J Hydrog Energy 35:5902

    Article  Google Scholar 

  17. Soares RR, Simonetti DA, Dumesic JA (2006) Angewandte Chemie Int Edition 118:4086

    Article  Google Scholar 

  18. Adhikari S, Fernando S, Haryanto A (2007) Energy Fuels 21:2306

    Article  CAS  Google Scholar 

  19. Cheng CK, Foo SY, Adesina AA (2010) Catal Commun 12:292

    Article  CAS  Google Scholar 

  20. Nichele V, Signoretto M, Menegazzo F, Gallo A, Dal Santo V, Cruciani G (2012) Appl Catal B 111-112:225

    Article  CAS  Google Scholar 

  21. Lin Y-C (2013) Int J Hydrogen Energy 38:2678

    Article  CAS  Google Scholar 

  22. Wang C, Dou B, Chen H, Song Y, Xu Y, Du X, Zhang L, Luo T, Tan C (2013) Int J Hydrog Energy 38:3562

    Article  CAS  Google Scholar 

  23. Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075

    Article  CAS  Google Scholar 

  24. Iriondo A, Cambra JF, Barrio VL, Guemez MB, Arias PL, Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2011) Appl Catal B 106:83

    CAS  Google Scholar 

  25. Adhikari S, Fernando SD, Haryanto A (2008) Renewable Energy 33:1097

    Article  CAS  Google Scholar 

  26. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B 43:13

    Article  CAS  Google Scholar 

  27. Cavani F, Trifiró F, Vaccari A (1991) Catal Today 11:173

    Article  CAS  Google Scholar 

  28. Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T (2003) J Catal 213:191

    Article  CAS  Google Scholar 

  29. Fonseca A, Assaf EM (2005) J Power Sources 142:154

    Article  CAS  Google Scholar 

  30. Cruz IO, Ribeiro NFP, Aranda DAG, Souza MMVM (2008) Catal Commun 9:2606

    Article  CAS  Google Scholar 

  31. Ferreira KA, Ribeiro NFP, Souza MMVM, Schmal M (2009) Catal Lett 132:58

    Article  CAS  Google Scholar 

  32. Vizcaíno AJ, Carrero A, Calles JA (2007) Int J Hydrog Energy 32:1450

    Article  Google Scholar 

  33. Chen L-C, Lin SD (2011) Appl Catal B 106:639

    Article  CAS  Google Scholar 

  34. Furtado AC, Alonso CG, Cantão MP, Fernandes-Machado NRC (2011) Int J Hydrog Energy 36:9653

    Article  CAS  Google Scholar 

  35. Corma A, Fornes V, Rey F (1994) J Catal 148:205

    Article  CAS  Google Scholar 

  36. Manfro RL, Pires TPMD, Ribeiro NFP, Souza MMVM (2013) Catalysis Sci Technol 3:1278

    Article  CAS  Google Scholar 

  37. Adhikari S, Fernando S, Gwaltney SR, Filip To SD, Bricka RM, Steele PH, Haryanto A (2007) Int J Hydrog Energy 32:2875

    Article  CAS  Google Scholar 

  38. Ashok J, Subrahmanyam M, Venugopal A (2008) Int J Hydrog Energy 33:2008

    Google Scholar 

  39. Buffoni IN, Pompeo F, Santori GF, Nichio NN (2009) Catal Commun 10:1656

    Article  CAS  Google Scholar 

  40. Dave CD, Pant KK (2011) Renew Energy 36:3195

    Article  CAS  Google Scholar 

  41. Iriondo A, Barrio VL, Cambra JF, Arias PL, Guemez MB, Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2010) Int J Hydrog Energy 35:11622

    Article  CAS  Google Scholar 

  42. Zhang L, Liu J, Li W, Guo C, Zhang J (2009) J Natural Gas Chem 18:55

    Article  Google Scholar 

  43. Gallo A, Pirovano C, Ferrini P, Marelli M, Psaro R, Santangelo S, Faggio G, Santo VD (2012) Appl Catal B 121–122:40

    Article  Google Scholar 

  44. Rogatis LD, Montini T, Lorenzut B, Fornasiero P (2008) Energy Environm Sci 1:501

    Google Scholar 

  45. Manfro RL, Ribeiro NFP, Souza MMVM (2013) Catal Sustainable Energy 1:60

    CAS  Google Scholar 

  46. Araque M, Martínez TLM, Vargas JC, Centeno MA, Roger AC (2012) Appl Catal B 125:556

    Article  CAS  Google Scholar 

  47. Sundari R, Vaidya PD (2012) Energy Fuels 26:4195

    Article  CAS  Google Scholar 

  48. Wang F, Li Y, Cai W, Zhan E, Mu X, Shen W (2009) Catal Today 146:31

    Article  CAS  Google Scholar 

  49. Cabanas-Polo S, Bermejo R, Ferrari B, Sanchez-Herencia AJ (2012) Corros Sci 55:172

    Article  CAS  Google Scholar 

  50. Sánchez-Sánchez MC, Navarro RM, Fierro JLG (2007) Catal Today 129:336

    Article  Google Scholar 

  51. Martínez TLM, Araque M, Vargas JC, Roger AC (2013) Appl Catal B 132–133:499

    Article  Google Scholar 

  52. Djaidja A, Kiennemann A, Barama A (2006) Studies Surf Sci Catal 162:945

    Article  CAS  Google Scholar 

  53. Bernardo CA, Alstrup I, Rostrup-Nielsen JR (1985) J Catal 96:517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq for the financial support granted to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana M. V. M. Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manfro, R.L., Souza, M.M.V.M. Production of Renewable Hydrogen by Glycerol Steam Reforming Using Ni–Cu–Mg–Al Mixed Oxides Obtained from Hydrotalcite-like Compounds. Catal Lett 144, 867–877 (2014). https://doi.org/10.1007/s10562-014-1196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1196-6

Keywords

Navigation