Skip to main content
Log in

Effect of Rhenium on Ruthenium Dispersion in the Ru–Re/γ-Al2O3 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ru–Re/γ-Al2O3 catalysts were prepared by the incipient wet co-impregnation method and characterized by ICP-AES, BET, H2-TPR, XRD, SEM, TEM and H2 chemisorption. Structure and chemisorption properties of these catalysts were compared with monometallic (Ru, Re) catalysts synthesized by using the same Ru(NO)(NO3)3 or RuCl3 and NH4ReO4 precursors. Results showed that Ru–Re/γ-Al2O3 catalysts consist primary of bimetallic nanoparticles with small sizes (<3 nm), while the larger particles were monometallic Re, especially for the bimetallic catalyst at the Ru/Re atomic ratio of 50:50. Chemisorption data revealed that Re modifies the interaction of hydrogen with ruthenium surface sites. In the chlorine-free Ru–Re catalysts, dispersion of ruthenium increased with the rise of the Re loading. The mean particle size decrease from 1.3 to 0.9 nm by change of the Ru/Re ratio from 90:10 to 50:50. Ruthenium particle size calculated from H2 uptake agreed well with XRD and TEM data. Ruthenium dispersion of the chlorine-containing bimetallic Ru–Re catalyst (Ru/Re = 75:25) was significantly lower and comparable with the Ru(Cl) catalyst. Also, the large discrepancies between the mean particle size obtained from H2 chemisorption (3.9 nm) and TEM (1.1 nm) were observed what is explained by the contamination of Ru surface by the Cl ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mol JC (1999) Catal Today 51:289

    Article  CAS  Google Scholar 

  2. Guryev YV, Ivanova II, Lunin VV, Grünert W, van den Berg MWE (2007) Appl Catal A Gen 329:16

    Article  CAS  Google Scholar 

  3. Koso S, Wanatabe H, Okumura K, Nakagawa Y, Tomishige K (2012) Appl Catal B Environ 111–112:27

    Article  Google Scholar 

  4. Amada Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2011) Appl Catal B Environ 105:117

    Article  CAS  Google Scholar 

  5. Malinowski A, Juszczyk W, Bonarowska M, Pielaszek J, Karpiński Z (1998) J Catal 177:153

    Article  CAS  Google Scholar 

  6. Sinfelt JH (1983) Bimetallic catalysts: discoveries, concepts, and applications. Wiley, New York

    Google Scholar 

  7. Juszczyk W, Karpiński Z (2001) Appl Catal A Gen 206:67

    Article  CAS  Google Scholar 

  8. Akhmedov VM, Al-Khowaiter SH (2000) Appl Catal A Gen 197:201

    Article  CAS  Google Scholar 

  9. Ma L, He D (2009) Top Catal 52:834

    Article  CAS  Google Scholar 

  10. Ma L, He D (2010) Catal Today 149:148

    Article  CAS  Google Scholar 

  11. Beamson G, Papworth AJ, Philipps Ch, Smith AM, Whyman R (2011) J Catal 278:228

    Article  CAS  Google Scholar 

  12. Ma L, Lin YM, He DH (2011) Chin J Catal 32:872

    Article  CAS  Google Scholar 

  13. Ponec V, Bond GC (1993) Stud Surf Sci Catal 95:339

    Google Scholar 

  14. Massalski TB (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  15. Okal J, Zawadzki M, Kępiński L, Krajczyk L, Tylus W (2007) Appl Catal A Gen 319:202

    Article  CAS  Google Scholar 

  16. Yao HC, Shelef M (1976) J Catal 44:392

    Article  CAS  Google Scholar 

  17. Chądzyński GW, Kubicka H (1990) Thermochim Acta 158:353

    Article  Google Scholar 

  18. Okal J, Kępiński L, Krajczyk L, Drozd M (1999) J Catal 188:140

    Article  CAS  Google Scholar 

  19. Chin SY, Williams CT, Amiridis MD (2006) J Phys Chem B 110:871

    Article  CAS  Google Scholar 

  20. Hadjiivanov K, Lavalley JC, Lamotte J, Maugé F, Saint-Just J, Che M (1998) J Catal 176:415

    Article  CAS  Google Scholar 

  21. Arnoldy P, van Oersa EM, Bruinsma OSL, de Beer VHJ, Moulijn JA (1985) J Catal 93:231

    Article  CAS  Google Scholar 

  22. Betancourt P, Rives A, Hubaut R, Scott CE, Goldwaser J (1998) Appl Catal A Gen 170:307

    Article  CAS  Google Scholar 

  23. Mazzieri V, Coloma-Pascual F, Arcoya A, Ľargentière PC, Figoli NS (2002) React Kinet Catal Lett 76:53

    Article  CAS  Google Scholar 

  24. Koso S, Wanatabe H, Okumura K, Nakagawa Y, Tomishige K (2012) J Phys Chem C 116:3079

    Article  CAS  Google Scholar 

  25. Simonetti DA, Kunkes EL, Dumesic JA (2007) J Catal 247:298

    Article  CAS  Google Scholar 

  26. Prestvik R, Moljord K, Grande K, Holmen A (1998) J Catal 174:119

    Article  CAS  Google Scholar 

  27. Zupanc C, Hornung A, Hinrichsen O, Muhler M (2002) J Catal 209:501

    Article  CAS  Google Scholar 

  28. Bradford MCJ, Vannice MA (1999) J Catal 183:69

    Article  CAS  Google Scholar 

  29. Lu K, Tatarchuk BJ (1987) J Catal 106:166

    Article  CAS  Google Scholar 

  30. Shastri AG, Schwank J, Galvagno S (1986) J Catal 100:446

    Article  CAS  Google Scholar 

  31. VanderWiel DP, Pruski M, King TS (1999) J Catal 188:186

    Article  CAS  Google Scholar 

  32. Shastri AG, Schwank J (1985) J Catal 95:271

    Article  CAS  Google Scholar 

  33. Yang CH, Goodwin JG Jr (1982) J Catal 78:182

    Article  CAS  Google Scholar 

  34. Ebashi T, Ishida Y, Nakagawa Y, Ito S, Kubota T, Tomishige K (2010) J Phys Chem C 114:6518

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Centre in Poland (Grant No. UMO-2012/07/B/ST5/020/28). The authors thank Mrs. L. Krajczyk for TEM study, Mrs. A. Cielecka for help in adsorption measurements and Prof. L. Kępiński for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Okal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranowska, K., Okal, J. & Miniajluk, N. Effect of Rhenium on Ruthenium Dispersion in the Ru–Re/γ-Al2O3 Catalysts. Catal Lett 144, 447–459 (2014). https://doi.org/10.1007/s10562-013-1169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1169-1

Keywords

Navigation