Catalysis Letters

, Volume 144, Issue 2, pp 252–260 | Cite as

Production of 5-Hydroxymethylfurfural from Mono- and Disaccharides in the Presence of Ionic Liquids

  • Jincai Shi
  • Wentao Liu
  • Ningning Wang
  • Yan Yang
  • Haijun Wang
Article

Abstract

The one-pot dehydration/hydrolysis of mono- and disaccharides to 5-hydroxymethylfurfural (HMF) in the presence of several imidazolium ionic liquids was efficiently performed. The study aims to make a mechanistic insights on the direct transformation of sugars to HMF, including glucose, fructose, galactose, sucrose, maltose and lactose. With the catalyst of [NMP][HSO4], a HMF yield of 87 % was achieved from sucrose. In addition, [AMIM]Cl revealed a remarkable catalytic activity for the transformation of fructose to HMF without other catalyst or co-solvent and the yield of HMF was 91.1 %. Theoretical calculation results showed that [AMIM]Cl expressed a more efficient catalytic activity than [BMIM]Cl.

Graphical Abstract

Fructose could directly convert into HMF in [AMIM]Cl without catalyst. Behaviors of disaccharides are largely determined by their basic units. The mechanism to explain the activity of [AMIM]Cl has been confirmed by using DFT method.

Keywords

Carbohydrates Degradation 5-Hydroxymethylfurfural Ionic liquids Mechanism 

Supplementary material

10562_2013_1148_MOESM1_ESM.docx (896 kb)
Supplementary material 1 (DOCX 896 kb)

References

  1. 1.
    Mascal M, Nikitin EB (2008) Angew Chem Int Ed Engl 47:7924CrossRefGoogle Scholar
  2. 2.
    Zhang Z, Zhao ZK (2010) Bioresour Technol 101:1111CrossRefGoogle Scholar
  3. 3.
    Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y (2008) Green Chem 10:1280CrossRefGoogle Scholar
  4. 4.
    Bredihhin A, Mäeorg U, Vares L (2013) Carbohydr Res 375:63CrossRefGoogle Scholar
  5. 5.
    Gorbanev YY, Kegnæs S, Riisager A (2011) Catal Lett 141:1752CrossRefGoogle Scholar
  6. 6.
    Sievers C, Musin I, Marzialetti T, Valenzuela Olarte MB, Agrawal PK, Jones CW (2009) ChemSusChem 2:665CrossRefGoogle Scholar
  7. 7.
    Dee SJ, Bell AT (2011) ChemSusChem 4:1166CrossRefGoogle Scholar
  8. 8.
    Guo H, Qi X, Li L, Smith RL Jr (2012) Bioresour Technol 116:355CrossRefGoogle Scholar
  9. 9.
    Wei Z, Liu Y, Thushara D, Ren Q (2012) Green Chem 14:1220CrossRefGoogle Scholar
  10. 10.
    Bali S, Tofanelli MA, Ernst RD, Eyring EM (2012) Biomass Bioenergy 42:224CrossRefGoogle Scholar
  11. 11.
    Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Appl Cata 363:93CrossRefGoogle Scholar
  12. 12.
    Wang C, Fu L, Tong X, Yang Q, Zhang W (2012) Carbohydr Res 347:182CrossRefGoogle Scholar
  13. 13.
    Richter FH, Pupovac K, Palkovits R, Schüth F (2012) ACS Cata 3:123CrossRefGoogle Scholar
  14. 14.
    Qi X, Watanabe M, Aida TM, Smith JRL (2008) Green Chem 10:799CrossRefGoogle Scholar
  15. 15.
    Choudhary V, Burnett RI, Vlachos DG, Sandler SI (2012) J Phys Chem C 116:5116CrossRefGoogle Scholar
  16. 16.
    Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Science 316:1597CrossRefGoogle Scholar
  17. 17.
    Bose S, Armstrong DW, Petrich JW (2010) J Phys Chem B 114:8221CrossRefGoogle Scholar
  18. 18.
    Li YN, Wang JQ, He LN, Yang ZZ, Liu AH, Yu B, Luan CR (2012) Green Chem 14:2752CrossRefGoogle Scholar
  19. 19.
    He J, Zhang Y, Chen EY (2013) ChemSusChem 6:61CrossRefGoogle Scholar
  20. 20.
    Jadhav AH, Kim H, Hwang IT (2013) Bioresour Technol 132:342CrossRefGoogle Scholar
  21. 21.
    Shi C, Zhao Y, Xin J, Wang J, Lu X, Zhang X, Zhang S (2012) Chem Commun 48:4103CrossRefGoogle Scholar
  22. 22.
    Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Green Chem 8:325CrossRefGoogle Scholar
  23. 23.
    Zhang H, Wu J, Zhang J, He J (2005) Macromolecules 38:8272CrossRefGoogle Scholar
  24. 24.
    Tong X, Li Y (2010) ChemSusChem 3:350CrossRefGoogle Scholar
  25. 25.
    Tao F, Song H, Chou L (2011) Bioresour Technol 102:9000CrossRefGoogle Scholar
  26. 26.
    Shi J, Gao H, Xia Y, Li W, Wang H, Zheng C (2013) RSC Adv 3:7782CrossRefGoogle Scholar
  27. 27.
    Zhang Z, Wang Q, Xie H, Liu W, Zhao ZK (2011) ChemSusChem 4:131CrossRefGoogle Scholar
  28. 28.
    Simeonov SP, Coelho JA, Afonso CA (2012) ChemSusChem 5:1388CrossRefGoogle Scholar
  29. 29.
    Binder JB, Cefali AV, Blank JJ, Raines RT (2010) Energy Environ Sci 3:765CrossRefGoogle Scholar
  30. 30.
    Assary RS, Redfern PC, Greeley J, Curtiss LA (2011) J Phys Chem B 115:4341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jincai Shi
    • 1
  • Wentao Liu
    • 1
  • Ningning Wang
    • 1
  • Yan Yang
    • 1
  • Haijun Wang
    • 1
  1. 1.School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations