Skip to main content

Advertisement

Log in

Plasma-Treated Bimetallic Ni–Pt Catalysts Derived from Hydrotalcites for the Carbon Dioxide Reforming of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Monometallic nickel and bimetallic nickel–platinum catalysts derived from hydrotalcites were prepared by glow discharge plasma pretreatment for the carbon dioxide reforming of methane. In the monometallic nickel catalyst, the plasma pretreatment increased the dispersion of nickel but decreased its degree of reduction, whereas the addition of platinum facilitated the reduction of nickel. As a result, the plasma-treated bimetallic Ni–Pt catalyst exhibited a high reforming activity. It also displayed an improved stability because of its enhanced resistance to sintering and excellent anti-coking performance. The plasma-assited Ni–Pt catalyst effectively inhibited coking by improving metal dispersion, reducing Ni0 size and modifying nickel ensembles.

Graphical Abstract

The P-NiPt/MgAlO catalyst exhibited improved activity and stability in the carbon dioxide reforming of methane. Its excellent anti-coking performance resutled from the small size of Ni0, high metal dispersion and Ni ensembles modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takanabe K, Nagaoka K, Nariai K, Aika K (2005) J Catal 232:268

    Article  CAS  Google Scholar 

  2. Xu LL, Song HL, Chou LJ (2011) Appl Catal B Environ 108–109:177

    Article  Google Scholar 

  3. Wang N, Chu W, Zhang T, Zhao XS (2011) Chem Eng J 170:457

    Article  CAS  Google Scholar 

  4. Kumar P, Sun YP, Idem RO (2008) Energy Fuels 22:3575

    Article  CAS  Google Scholar 

  5. Spadaro L, Arena F, Granados ML, Ojeda M, Frusteri F (2005) J Catal 234:451

    Article  CAS  Google Scholar 

  6. Kim WY, Hayashi H, Kishida M, Nagata H, Wakabayashi K (1998) Appl Catal A Gen 169:157

    Article  CAS  Google Scholar 

  7. Venugopal A, Palgunadi J, Deog JK, Joo OS, Shin CH (2009) Catal Today 147:94

    Article  CAS  Google Scholar 

  8. Choi J, Zhang SH, Hill JM (2012) Catal Sci Technol 2:179

    Article  CAS  Google Scholar 

  9. Xue MW, Hu SH, Chen H, Fu YC, Shen JY (2011) Catal Commun 12:332

    Article  CAS  Google Scholar 

  10. Chen H, Xue MW, Hu SH (2012) Chem Eng J 181:677

    Article  Google Scholar 

  11. Rossetti I, Biffi C, Bianchi CL, Nichele V, Signoretto M, Menegazzo F, Finocchio E, Ramis G, Michele AD (2012) Appl Catal B Environ 117–118:384

    Article  Google Scholar 

  12. Ligthart DAJM, Pieterse JAZ, Hensen EJM (2011) Appl Catal A Gen 405:108

    Article  CAS  Google Scholar 

  13. Zeng GM, Liu QH, Gu RX, Zhang LH, Li YD (2011) Catal Today 178:206

    Article  CAS  Google Scholar 

  14. Pan YX, Liu CJ, Shi P (2008) J Power Sour 176:46

    Article  CAS  Google Scholar 

  15. Crisafulli C, Scirè S, Minicò S, Solarino L (2002) Appl Catal A Gen 225:1

    Article  CAS  Google Scholar 

  16. Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) J Catal 194:424

    Article  CAS  Google Scholar 

  17. Cheng DG, Zhu X, Ben YH, He F, Cui L, Liu CJ (2006) Catal Today 115:205

    Article  CAS  Google Scholar 

  18. Zhu XL, Huo PP, Zhang YP, Cheng DG, Liu CJ (2008) Appl Catal B Environ 81:132

    Article  CAS  Google Scholar 

  19. Zhang H, Chu W, Xu HY, Zhou J (2010) Fuel 89:3127

    Article  CAS  Google Scholar 

  20. Zou JJ, Chen C, Liu CJ, Zhang YP, Han Y, Cui L (2005) Mater Lett 59:3437

    Article  CAS  Google Scholar 

  21. Wang HP, Liu CJ (2011) Appl Catal B Environ 106:672

    Article  CAS  Google Scholar 

  22. Zou JJ, Liu CJ, Zhang YP (2006) Langmuir 22:2334

    Article  CAS  Google Scholar 

  23. Chu W, Wang LN, Chernavskii PA, Khodakov AY (2008) Angew Chem Int Ed 47:5052

    Article  CAS  Google Scholar 

  24. Hong JP, Chu W, Chernavskii PA, Khodakov AY (2010) J Catal 273:9

    Article  CAS  Google Scholar 

  25. Li DL, Zhan YY, Nishida K, Oumi Y, Sano T, Shishido T, Takehira K (2009) Appl Catal A Gen 363:169

    Article  CAS  Google Scholar 

  26. Li J, Tian WP, Wang X, Shi L (2011) Chem Eng J 175:417

    Article  CAS  Google Scholar 

  27. Daza CE, Cabrera CR, Moreno S, Molina R (2010) Appl Catal A Gen 378:125

    Article  CAS  Google Scholar 

  28. Şen F, Gökağaç G (2007) J Phys Chem C 111:5715

    Article  Google Scholar 

  29. Yu XP, Chu W, Wang N, Ma F (2011) Catal Lett 141:1228

    Article  CAS  Google Scholar 

  30. Wang GJ, Gao YZ, Wang ZB, Du CY, Wang JJ, Yin GP (2010) J Power Sources 195:185

    Article  CAS  Google Scholar 

  31. Wang JSB, Hsiao SZ, Huang TJ (2003) Appl Catal A Gen 246:197

    Article  CAS  Google Scholar 

  32. Liu BS, Au CT (2003) Appl Catal A Gen 244:181

    Article  CAS  Google Scholar 

  33. Liu DP, Quek YX, Cheo WNE, Lau R, Borgna A, Yang YH (2009) J Catal 266:380

    Article  CAS  Google Scholar 

  34. Yu XP, Wang N, Chu W, Liu M (2012) Chem Eng J 209:623

    Article  CAS  Google Scholar 

  35. Osaki T, Mori T (2001) J Catal 204:89

    Article  CAS  Google Scholar 

  36. Diéguez GM, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ (2010) J Catal 270:136

    Article  Google Scholar 

  37. Cesar DV, Baldanza MAS, Henriques CA, Pompeo F, Santori G, Múnera J, Lombardo E, Schmal M, Cornaglia L, Nichio N (2013) Int J Hydrogen Energy 38:5616

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2010SCU22010) and the National Basic Research Program of China (973 Program, No. 2011CB201202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Zhang, F., Wang, N. et al. Plasma-Treated Bimetallic Ni–Pt Catalysts Derived from Hydrotalcites for the Carbon Dioxide Reforming of Methane. Catal Lett 144, 293–300 (2014). https://doi.org/10.1007/s10562-013-1130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1130-3

Keywords

Navigation