Skip to main content

Promotion, Electrochemical Promotion and Metal–Support Interactions: Their Common Features

Abstract

The catalytic activity and selectivity of metals can be significantly modified via the action of promoters, via the interaction with the support (metal–support interactions, MSI) or, when the support has some ionic mobility, via the application of electrical potential (±2 V) between the catalyst and the support, a phenomenon known as electrochemical promotion of catalysis (EPOC). During the last two decades it is becoming increasingly obvious that chemical (classical) promotion, EPOC and MSI are, via the action of spillover of promoting species, very closely related, to the point that the differences between them are only operational and not functional. This impressive similarity is apparently closely related to the gradual substitution of classical insulating supports (SiO2, Al2O3) with ionically conducting or mixed ionically-electronically conducting ceramic supports in many commercial catalysts during the last 25 years. In this perspective we focus on a few key experiments which have demonstrated this striking similarity and we also discuss some recent advances on the electrochemical promotion of finely dispersed catalysts which appear to be of significant practical interest.

Graphical Abstract

Comparison of MSI and Electrochemical Promotion for C2H4 oxidation on Rh

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Somorjai GA (1981) Chemistry in two dimensions: surfaces. Cornell University Press, Ithaca

    Google Scholar 

  2. 2.

    Hegedus LL, Aris R, Bell AT, Boudart M, Chen NY, Gates BC, Haag WO, Somorjai GA, Wei J (1987) Catalyst design: progress and perspectives. Wiley, New York

    Google Scholar 

  3. 3.

    Ertl G, Knötzinger H, Weitcamp J (1997) Handbook of catalysis. VCH Publishers, Weinheim

    Book  Google Scholar 

  4. 4.

    Wieckowski A, Savinova E, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticles. Marcel Dekker, New York

    Book  Google Scholar 

  5. 5.

    Kiskinova M (1992) Poisoning and promotion in catalysis based on surface science concepts and experiments, in: studies in surface science and catalysis. Elsevier, Amsterdam

    Google Scholar 

  6. 6.

    Stoukides M, Vayenas CG (1981) The effect of electrochemical oxygen pumping on the rate and selectivity of ethylene oxidation on polycrystalline silver. J Catal 70:137–146

    CAS  Article  Google Scholar 

  7. 7.

    Baltruschat H, Anastasijevic NA, Beltowska-Brzezinska M, Hambitzer G, Heitbaum J (1990) Electrochemical detection of organic gases: the development of a formaldehyde sensor. Berichte Bunsengesellschaft der Physikalischen Chemie 94:996–1000

    CAS  Article  Google Scholar 

  8. 8.

    Politova TI, Sobyanin VA, Belyaev VD (1990) Ethylene hydrogenation in electrochemical cell with solid proton-conducting electrolyte. React Kinet Catal Lett 41:321–326

    CAS  Article  Google Scholar 

  9. 9.

    Pritchard J (1990) Electrochemical promotion. Nature 343:592

    Article  Google Scholar 

  10. 10.

    Vayenas CG, Bebelis S, Ladas S (1990) Dependence of catalytic rates on catalyst work function. Nature 343:625–627

    CAS  Article  Google Scholar 

  11. 11.

    Nicole J, Comninellis C (1998) Electrochemical promotion of IrO2 catalyst activity for the gas phase combustion of ethylene. J Appl Electrochem 28:223–226

    CAS  Article  Google Scholar 

  12. 12.

    Ploense L, Salazar M, Gurau B, Smotkin ES (1997) Proton spillover promoted isomerization of n-butylenes on Pd-black cathodes/nafion 117. J Am Chem Soc 119:11550–11551

    CAS  Article  Google Scholar 

  13. 13.

    Neophytides S, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1994) Electrochemical enhancement of a catalytic reaction in aqueous solution. Nature 370:45–47

    CAS  Article  Google Scholar 

  14. 14.

    de Lucas-Consuegra A, Princivalle A, Caravaca A, Dorado F, Marouf A, Guizard C, Valverde JL, Vernoux P (2009) Preparation and characterization of a low particle size Pt/C catalyst electrode for the simultaneous electrochemical promotion of CO and C3H6 oxidation. Appl Catal A 365:274–280

    Article  Google Scholar 

  15. 15.

    Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Electrochemical promotion of platinum impregnated catalyst for the selective catalytic reduction of NO by propene in presence of oxygen. Appl Catal B 73:42–50

    CAS  Article  Google Scholar 

  16. 16.

    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, Electrochemical Promotion and Metal–Support Interactions. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  17. 17.

    R. Lambert, in: A. Wieckowski, E. Savinova, C.G. Vayenas (Eds.) Catalysis and Electrocatalysis at Nanoparticles Marcel Dekker, Inc., New York, 2003

  18. 18.

    Haller GL (2003) New catalytic concepts from new materials: understanding catalysis from a fundamental perspective, past, present, and future. J Catal 216:12–22

    CAS  Article  Google Scholar 

  19. 19.

    Vayenas CG, Koutsodontis CG (2008) Non-Faradaic electrochemical activation of catalysis. J Chem Phys. doi:10.1063/1.2824944

    Google Scholar 

  20. 20.

    Tsiplakides D, Balomenou S (2009) Milestones and perspectives in electrochemically promoted catalysis. Catal Today 146:312–318

    CAS  Article  Google Scholar 

  21. 21.

    Katsaounis A (2010) Recent developments and trends in the electrochemical promotion of catalysis (EPOC). J Appl Electrochem 40:885–902

    CAS  Article  Google Scholar 

  22. 22.

    Vayenas CG (2011) Bridging electrochemistry and heterogeneous catalysis. J Solid State Electrochem 15:1425–1435

    CAS  Article  Google Scholar 

  23. 23.

    Vernoux P, Lizarraga L, De Lucas-Consuegra A, De Lucas-Consuegra A, Valverde JL, Souentie S, Vayenas C, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalytic supports. Chem Rev 113:8192–8260

    CAS  Article  Google Scholar 

  24. 24.

    Mutoro E, Koutsodontis C, Luerssen B, Brosda S, Vayenas CG, Janek J (2010) Electrochemical promotion of Pt(111)/YSZ(111) and Pt-FeOx/YSZ(111) thin catalyst films: Electrocatalytic, catalytic and morphological studies. Appl Catal B 100:328–337

    CAS  Article  Google Scholar 

  25. 25.

    Rosenthal D (2011) Functional surfaces in heterogeneous catalysis: a short review. Phys Status Solidi A 208:1217–1222

    CAS  Article  Google Scholar 

  26. 26.

    Sterrer M, Freund HJ (2013) Towards realistic surface science models of heterogeneous catalysts: influence of support hydroxylation and catalyst preparation method. Catal Lett 143:375–385

    CAS  Article  Google Scholar 

  27. 27.

    Yentekakis IV, Konsolakis M, Lambert RM, MacLeod N, Nalbantian L (1999) Extraordinarily effective promotion by sodium in emission control catalysis: NO reduction by propene over Na-promoted Pt/γ-Al2o3. Appl Catal B 22:123–133

    CAS  Article  Google Scholar 

  28. 28.

    Palermo A, Lambert RM, Harkness IR, Yentekakis IV, Mar’ina O, Vayenas CG (1996) Electrochemical promotion by Na of the platinum-catalyzed reaction between CO and NO. J Catal 161:471–479

    CAS  Article  Google Scholar 

  29. 29.

    Vayenas CG, Bebelis S, Despotopoulou M (1991) Non-faradaic electrochemical modification of catalytic activity 4. The use of β″-Al2O3 as the solid electrolyte. J Catal 128:415–435

    CAS  Article  Google Scholar 

  30. 30.

    Tsampas MN, Sapountzi FM, Vayenas CG (2009) Electrochemical promotion of CO oxidation on Pt/YSZ: the effect of catalyst potential on the induction of highly active stationary and oscillatory states. Catal Today 146:351–358

    CAS  Article  Google Scholar 

  31. 31.

    Bebelis S, Vayenas CG (1989) Non-faradaic electrochemical modification of catalytic activity: 1 the case of ethylene oxidation on Pt. J Catal 118:125–146

    CAS  Article  Google Scholar 

  32. 32.

    Vayenas CG, Brosda S, Pliangos C (2001) Rules and mathematical modeling of electrochemical and chemical promotion: 1 reaction classification and promotional rules. J Catal 203:329–350

    CAS  Article  Google Scholar 

  33. 33.

    Brosda S, Vayenas CG, Wei J (2006) Rules of chemical promotion. Appl Catal B 68:109–124

    CAS  Article  Google Scholar 

  34. 34.

    Ladas S, Kennou S, Bebelis S, Vayenas CG (1993) Origin of non-faradaic electrochemical modification of catalytic activity. J Phys Chem 97:8845–8848

    CAS  Article  Google Scholar 

  35. 35.

    Zipprich W, Wiemhöfer H-D, Vöhrer U, Göpel W (1995) In-situ photoelectron-spectroscopy of oxygen electrodes on stabilized zirconia. Berichte Bunsengesellschaft der Physikalischen Chemie 99:1406–1413

    CAS  Article  Google Scholar 

  36. 36.

    Luerssen B, Gόnther S, Marbach H, Kiskinova M, Janek J, Imbihl R (2000) Photoelectron spectromicroscopy of electrochemically induced oxygen spillover at the Pt/YSZ interface. Chem Phys Lett 316:331–335

    CAS  Article  Google Scholar 

  37. 37.

    Li X, Gaillard F, Vernoux P (2007) Investigations under real operating conditions of the electrochemical promotion by O2 temperature programmed desorption measurements. Top Catal 44:391–398

    CAS  Article  Google Scholar 

  38. 38.

    Neophytides SG, Vayenas CG (1995) TPD and cyclic voltammetric investigation of the origin of electrochemical promotion in catalysis. J Phys Chem 99:17063–17067

    CAS  Article  Google Scholar 

  39. 39.

    Tsiplakides D, Vayenas CG (1999) Temperature programmed desorption of oxygen from Ag films interfaced with Y2O3-doped ZrO2. J Catal 185:237–251

    CAS  Article  Google Scholar 

  40. 40.

    Neophytides SG, Tsiplakides D, Vayenas CG (1998) Temperature-programmed desorption of oxygen from Pt films interfaced with Y2O3-doped ZrO2. J Catal 178:414–428

    CAS  Article  Google Scholar 

  41. 41.

    Poppe J, Schaak A, Janek J, Imbihl R (1998) Electrochemically induced surface changes on microstructured Pt Films on a solid YSZ electrolyte. Berichte Bunsengesellschaft der Physikalischen Chemie 102:1019–1022

    CAS  Article  Google Scholar 

  42. 42.

    Luerßen B, Mutoro E, Fischer H, Günther S, Imbihl R, Janek J (2006) In situ imaging of electrochemically induced oxygen spillover on Pt/YSZ catalysts. Angewandte Chemie—Int Ed 45:1473–1476

    Article  Google Scholar 

  43. 43.

    Makri M, Vayenas CG, Bebelis S, Besocke KH, Cavalca C (1996) Atomic resolution STM imaging of electrochemically controlled reversible promoter dosing of catalysts. Surf Sci 369:351–359

    CAS  Article  Google Scholar 

  44. 44.

    Vayenas C, Archonta D, Tsiplakides D (2003) STM observation of the origin of electrochemical promotion and Metal–Support interactions. J Electroanal Chem 554–555:301–306

    Article  Google Scholar 

  45. 45.

    Tsiplakides D, Vayenas CG (2001) Electrode work function and absolute potential scale in solid-state electrochemistry. J Electrochem Soc 148:E189–E202

    CAS  Article  Google Scholar 

  46. 46.

    Frantzis AD, Bebelis S, Vayenas CG (2000) Electrochemical promotion (NEMCA) of CH4 and C2H4 oxidation on Pd/YSZ and investigation of the origin of NEMCA via AC impedance spectroscopy. Solid State Ionics 136–137:863–872

    Article  Google Scholar 

  47. 47.

    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and Metal–Support interactions 1. 18O2 TPD of electropromoted Pt films deposited on YSZ and of dispersed Pt/YSZ catalysts. J Catal 222:192–206

    CAS  Article  Google Scholar 

  48. 48.

    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and metal–support interactions: 2. CO oxidation by 18O2 on electropromoted Pt films deposited on YSZ and on nanodispersed Pt/YSZ catalysts. J Catal 226:197–209

    CAS  Article  Google Scholar 

  49. 49.

    Tsampas MN, Sapountzi FM, Boréave A, Vernoux P (2013) Isotopical labeling mechanistic studies of electrochemical promotion of propane combustion on Pt/YSZ. Electrochem Commun 26:13–16

    CAS  Article  Google Scholar 

  50. 50.

    Pacchioni G, Illas F, Neophytides S, Vayenas CG (1996) Quantum-chemical study of electrochemical promotion in catalysis. J Phys Chem 100:16653–16661

    CAS  Article  Google Scholar 

  51. 51.

    Pacchioni G, Lomas JR, Illas F (1997) Electric field effects in heterogeneous catalysis. Molecular Catalysis A 119:263–273

    CAS  Article  Google Scholar 

  52. 52.

    Leiva E, Sanchez C (2003) The theory of the NEMCA effect. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells—fundamentals, technology and applications. Wiley, New York, pp 145–149

  53. 53.

    Leiva EPM (2007) On the work function changes and other properties of the gas-exposed electrode surface in the NEMCA effect. Top Catal 44:347–354

    CAS  Article  Google Scholar 

  54. 54.

    Vayenas CG (2004) Thermodynamic analysis of the electrochemical promotion of catalysis. Solid State Ionics 168:321–326

    CAS  Article  Google Scholar 

  55. 55.

    Riess I, Vayenas CG (2003) Potential distribution in solid electrolyte cells with and without ion spillover. Solid State Ionics 159:313–329

    CAS  Article  Google Scholar 

  56. 56.

    Fleig J, Jamnik J (2005) Work function changes of polarized electrodes on solid electrolytes. J Electrochem Soc 152:E138–E145

    CAS  Article  Google Scholar 

  57. 57.

    Panagiotopoulou P, Kondarides DI (2006) Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction. Catal Today 112:49–52

    CAS  Article  Google Scholar 

  58. 58.

    Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis C, Vayenas CG (2001) Electrochemical promotion and metal–support interactions. J Catal 204:23–34

    CAS  Article  Google Scholar 

  59. 59.

    Constantinou I, Archonta D, Brosda S, Lepage M, Sakamoto Y, Vayenas CG (2007) Electrochemical promotion of NO reduction by C3H6 on Rh catalyst-electrode films supported on YSZ and on dispersed Rh/YSZ catalysts. J Catal 251:400–409

    CAS  Article  Google Scholar 

  60. 60.

    Somorjai GA (2005) The catalytic nanodiode. Its role in catalytic reaction mechanisms in a historical perspective. Catal Lett 101:1–3

    CAS  Article  Google Scholar 

  61. 61.

    Park JY, Renzas JR, Contreras AM, Somorjai GA (2007) The genesis and importance of oxide-metal interface controlled heterogeneous catalysis; the catalytic nanodiode. Top Catal 46:217

    CAS  Article  Google Scholar 

  62. 62.

    Somorjai GA, Park JY (2009) Concepts, instruments, and model systems that enabled the rapid evolution of surface science. Surf Sci 603:1293–1300

    CAS  Article  Google Scholar 

  63. 63.

    Schwab GM, Darleth H (1967) J Phys Chem Neue Folge 53:1

    CAS  Article  Google Scholar 

  64. 64.

    Solymosi F (1967) Catal Rev 1:233

    CAS  Article  Google Scholar 

  65. 65.

    Agiral A, Gardeniers HJGE (2010) Microreactors with electrical fields. Adv Chem Eng 38:37

    CAS  Article  Google Scholar 

  66. 66.

    Gorin CF, Beh ES, Kanan MW (2012) An electric field-induced change in the selectivity of a metal oxide-catalyzed epoxide rearrangement. J Am Chem Soc 134:186–189

    CAS  Article  Google Scholar 

  67. 67.

    Jiménez-Borja C, Brosda S, Matei F, Makri M, Delgado B, Sapountzi F, Ciuparu D, Dorado F, Valverde JL, Vayenas CG (2012) Electrochemical promotion of methane oxidation on Pd catalyst-electrodes deposited on Y2O3-stabilized-ZrO2. Appl Catal B 128:48–54

    Article  Google Scholar 

  68. 68.

    Roche V, Karoum R, Billard A, Revel R, Vernoux P (2008) Electrochemical promotion of deep oxidation of methane on Pd/YSZ. J Appl Electrochem 38:1111–1119

    CAS  Article  Google Scholar 

  69. 69.

    Nakos A, Souentie S, Katsaounis A (2010) Electrochemical promotion of methane oxidation on Rh/YSZ. Appl Catal B 101:31–37

    CAS  Article  Google Scholar 

  70. 70.

    Bebelis S, Kotsionopoulos N (2006) Non-Faradaic electrochemical modification of the catalytic activity for propane combustion of Pt/YSZ and Rh/YSZ catalyst-electrodes. Solid State Ionics 177:2205–2209

    CAS  Article  Google Scholar 

  71. 71.

    Kokkofitis C, Karagiannakis G, Stoukides M (2007) Electrochemical promotion in O2-cells during propane oxidation. Top Catal 44:361–368

    CAS  Article  Google Scholar 

  72. 72.

    Theleritis D, Souentie S, Siokou A, Katsaounis A, Vayenas CG (2012) Hydrogenation of CO2 over Ru/YSZ electropromoted catalysts. ACS Catal 2:770–780

    CAS  Article  Google Scholar 

  73. 73.

    Souentie S, Lizarraga L, Kambolis A, Alves-Fortunato M, Valverde JL, Vernoux P (2011) Electrochemical promotion of the water–gas shift reaction on Pt/YSZ. J Catal 283:124–132

    CAS  Article  Google Scholar 

  74. 74.

    Caravaca A, de Lucas-Consuegra A, Molina-Mora C, Valverde JL, Dorado F (2011) Enhanced H2 formation by electrochemical promotion in a single chamber steam electrolysis cell. Appl Catal B 106:54–62

    CAS  Google Scholar 

  75. 75.

    de Lucas-Consuegra A, González-Cobos J, García-Rodríguez Y, Mosquera A, Endrino JL, Valverde JL (2012) Enhancing the catalytic activity and selectivity of the partial oxidation of methanol by electrochemical promotion. J Catal 293:149–157

    Article  Google Scholar 

  76. 76.

    de Lucas-Consuegra A, Princivalle A, Caravaca A, Dorado F, Guizard C, Valverde JL, Vernoux P (2010) Preferential CO oxidation in hydrogen-rich stream over an electrochemically promoted Pt catalyst. Appl Catal B 94:281–287

    Article  Google Scholar 

  77. 77.

    Lintanf A, Djurado E, Vernoux P (2008) Pt/YSZ electrochemical catalysts prepared by electrostatic spray deposition for selective catalytic reduction of NO by C3H6. Solid State Ionics 178:1998–2008

    CAS  Article  Google Scholar 

  78. 78.

    de Lucas-Consuegra A, Caravaca A, Martínez PJ, Endrino JL, Dorado F, Valverde JL (2010) Development of a new electrochemical catalyst with an electrochemically assisted regeneration ability for H2 production at low temperatures. J Catal 274:251–258

    Article  Google Scholar 

  79. 79.

    Poulidi D, Mather GC, Tabacaru CN, Thursfield A, Metcalfe IS (2009) Electrochemical promotion of a platinum catalyst supported on the high-temperature proton conductor La0.99Sr0.01NbO4−δ. Catal Today 146:279–284

    CAS  Article  Google Scholar 

  80. 80.

    Salazar M, Smotkin E (2006) Electrochemically promoted olefin isomerization reactions at polymer electrolyte fuel cell membrane electrode assemblies. J Appl Electrochem 36:1237–1240

    CAS  Article  Google Scholar 

  81. 81.

    Baranova EA, Thursfield A, Brosda S, Fóti G, Comninellis C, Vayenas CG (2005) Electrochemically induced oscillations of C2H4 oxidation over thin sputtered Rh catalyst films. Catal Lett 105:15–21

    CAS  Article  Google Scholar 

  82. 82.

    Roche V, Hadjar A, Deloume JP, Pagnier T, Revel R, Roux C, Siebert E, Vernoux P (2009) Physicochemical origins of electrochemical promotion of LSM/YSZ. Catal Today 146:266–273

    CAS  Article  Google Scholar 

  83. 83.

    Koutsodontis C, Katsaounis A, Figueroa JC, Cavalca C, Pereira CJ, Vayenas CG (2006) The effect of catalyst film thickness on the magnitude of the electrochemical promotion of catalytic reactions. Top Catal 38:157–167

    CAS  Article  Google Scholar 

  84. 84.

    Anastasijevic NA (2009) NEMCA-From discovery to technology. Catal Today 146:308–311

    CAS  Article  Google Scholar 

  85. 85.

    Yiokari CG, Pitselis GE, Polydoros DG, Katsaounis AD, Vayenas CG (2000) High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst. J Phys Chem A 104:10600–10602

    CAS  Article  Google Scholar 

  86. 86.

    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Fóti G, Comninellis C, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Monolithic electrochemically promoted reactors: a step for the practical utilization of electrochemical promotion. Solid State Ionics 177:2201–2204

    CAS  Article  Google Scholar 

  87. 87.

    Ruiz E, Cillero D, Martínez PJ, Morales Á, Vicente GS, De Diego G, Sánchez JM (2013) Bench scale study of electrochemically promoted catalytic CO2 hydrogenation to renewable fuels. Catal Today 210:55–66

    CAS  Article  Google Scholar 

  88. 88.

    Vayenas CG, Vernoux P (2011) Note on “the electrochemical promotion of ethylene oxidation at a Pt/YSZ catalyst”. ChemPhysChem 12:1761–1763

    CAS  Article  Google Scholar 

  89. 89.

    Vernoux P, Vayenas CG (2011) Note on “electrochemical promotion of catalytic reactions”. Prog Surf Sci 86:83–93

    CAS  Article  Google Scholar 

  90. 90.

    Marwood M, Vayenas CG (1997) Electrochemical promotion of electronically isolated Pt catalysts on stabilized zirconia. J Catal 168:538–542

    CAS  Article  Google Scholar 

  91. 91.

    Xia C, Hugentobler M, Li Y, Foti G, Comninellis C, Harbich W (2011) Electrochemical promotion of CO combustion over non-percolated Pt particles supported on YSZ using a novel bipolar configuration. Electrochem Commun 13:99–101

    CAS  Article  Google Scholar 

  92. 92.

    Roche V, Revel R, Vernoux P (2010) Electrochemical promotion of YSZ monolith honeycomb for deep oxidation of methane. Catal Commun 11:1076–1080

    CAS  Article  Google Scholar 

  93. 93.

    Kambolis A, Lizarraga L, Tsampas MN, Burel L, Rieu M, Viricelle JP, Vernoux P (2012) Electrochemical promotion of catalysis with highly dispersed Pt nanoparticles. Electrochem Commun 19:5–8

    CAS  Article  Google Scholar 

  94. 94.

    Cavalca CA, Larsen G, Vayenas CG, Haller GL (1993) Electrochemical modification of methanol oxidation selectivity and activity on a platinum single-pellet catalytic reactor. J Phys Chem 97:6115–6119

    CAS  Article  Google Scholar 

  95. 95.

    Wang Z, Huang H, Liu H, Zhou X (2012) Self-sustained electrochemical promotion catalysts for partial oxidation reforming of heavy hydrocarbons. Int J Hydrogen Energy 37:17928–17935

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Sincerest thanks are expressed to all my coauthors and coworkers over the years, and particularly to Dr. S. Brosda for careful reading of the manuscript and to Ms. Chryssa Pilisi for manuscript preparation. Work supported by the “ARISTEIA” Action of the “Operational programme of education and lifelong learning” which is co-funded by the European Social Fund (ESF) and National Resources.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Costas G. Vayenas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vayenas, C.G. Promotion, Electrochemical Promotion and Metal–Support Interactions: Their Common Features. Catal Lett 143, 1085–1097 (2013). https://doi.org/10.1007/s10562-013-1128-x

Download citation

Keywords

  • Promotion
  • Electrochemical promotion of catalysis (EPOC)
  • Non-Faradaic electrochemical promotion of catalysis (NEMCA effect)
  • Metal–support interactions (MSI)
  • Catalytic nanodiode
  • Spillover–backspillover phenomena
  • Fermi level
  • Work function
  • Double layer