Catalysis Letters

, Volume 143, Issue 11, pp 1085–1097 | Cite as

Promotion, Electrochemical Promotion and Metal–Support Interactions: Their Common Features

  • Costas G. Vayenas


The catalytic activity and selectivity of metals can be significantly modified via the action of promoters, via the interaction with the support (metal–support interactions, MSI) or, when the support has some ionic mobility, via the application of electrical potential (±2 V) between the catalyst and the support, a phenomenon known as electrochemical promotion of catalysis (EPOC). During the last two decades it is becoming increasingly obvious that chemical (classical) promotion, EPOC and MSI are, via the action of spillover of promoting species, very closely related, to the point that the differences between them are only operational and not functional. This impressive similarity is apparently closely related to the gradual substitution of classical insulating supports (SiO2, Al2O3) with ionically conducting or mixed ionically-electronically conducting ceramic supports in many commercial catalysts during the last 25 years. In this perspective we focus on a few key experiments which have demonstrated this striking similarity and we also discuss some recent advances on the electrochemical promotion of finely dispersed catalysts which appear to be of significant practical interest.

Graphical Abstract

Comparison of MSI and Electrochemical Promotion for C2H4 oxidation on Rh


Promotion Electrochemical promotion of catalysis (EPOC) Non-Faradaic electrochemical promotion of catalysis (NEMCA effect) Metal–support interactions (MSI) Catalytic nanodiode Spillover–backspillover phenomena Fermi level Work function Double layer 



Sincerest thanks are expressed to all my coauthors and coworkers over the years, and particularly to Dr. S. Brosda for careful reading of the manuscript and to Ms. Chryssa Pilisi for manuscript preparation. Work supported by the “ARISTEIA” Action of the “Operational programme of education and lifelong learning” which is co-funded by the European Social Fund (ESF) and National Resources.


  1. 1.
    Somorjai GA (1981) Chemistry in two dimensions: surfaces. Cornell University Press, IthacaGoogle Scholar
  2. 2.
    Hegedus LL, Aris R, Bell AT, Boudart M, Chen NY, Gates BC, Haag WO, Somorjai GA, Wei J (1987) Catalyst design: progress and perspectives. Wiley, New YorkGoogle Scholar
  3. 3.
    Ertl G, Knötzinger H, Weitcamp J (1997) Handbook of catalysis. VCH Publishers, WeinheimCrossRefGoogle Scholar
  4. 4.
    Wieckowski A, Savinova E, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticles. Marcel Dekker, New YorkCrossRefGoogle Scholar
  5. 5.
    Kiskinova M (1992) Poisoning and promotion in catalysis based on surface science concepts and experiments, in: studies in surface science and catalysis. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Stoukides M, Vayenas CG (1981) The effect of electrochemical oxygen pumping on the rate and selectivity of ethylene oxidation on polycrystalline silver. J Catal 70:137–146CrossRefGoogle Scholar
  7. 7.
    Baltruschat H, Anastasijevic NA, Beltowska-Brzezinska M, Hambitzer G, Heitbaum J (1990) Electrochemical detection of organic gases: the development of a formaldehyde sensor. Berichte Bunsengesellschaft der Physikalischen Chemie 94:996–1000CrossRefGoogle Scholar
  8. 8.
    Politova TI, Sobyanin VA, Belyaev VD (1990) Ethylene hydrogenation in electrochemical cell with solid proton-conducting electrolyte. React Kinet Catal Lett 41:321–326CrossRefGoogle Scholar
  9. 9.
    Pritchard J (1990) Electrochemical promotion. Nature 343:592CrossRefGoogle Scholar
  10. 10.
    Vayenas CG, Bebelis S, Ladas S (1990) Dependence of catalytic rates on catalyst work function. Nature 343:625–627CrossRefGoogle Scholar
  11. 11.
    Nicole J, Comninellis C (1998) Electrochemical promotion of IrO2 catalyst activity for the gas phase combustion of ethylene. J Appl Electrochem 28:223–226CrossRefGoogle Scholar
  12. 12.
    Ploense L, Salazar M, Gurau B, Smotkin ES (1997) Proton spillover promoted isomerization of n-butylenes on Pd-black cathodes/nafion 117. J Am Chem Soc 119:11550–11551CrossRefGoogle Scholar
  13. 13.
    Neophytides S, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1994) Electrochemical enhancement of a catalytic reaction in aqueous solution. Nature 370:45–47CrossRefGoogle Scholar
  14. 14.
    de Lucas-Consuegra A, Princivalle A, Caravaca A, Dorado F, Marouf A, Guizard C, Valverde JL, Vernoux P (2009) Preparation and characterization of a low particle size Pt/C catalyst electrode for the simultaneous electrochemical promotion of CO and C3H6 oxidation. Appl Catal A 365:274–280CrossRefGoogle Scholar
  15. 15.
    Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Electrochemical promotion of platinum impregnated catalyst for the selective catalytic reduction of NO by propene in presence of oxygen. Appl Catal B 73:42–50CrossRefGoogle Scholar
  16. 16.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, Electrochemical Promotion and Metal–Support Interactions. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  17. 17.
    R. Lambert, in: A. Wieckowski, E. Savinova, C.G. Vayenas (Eds.) Catalysis and Electrocatalysis at Nanoparticles Marcel Dekker, Inc., New York, 2003Google Scholar
  18. 18.
    Haller GL (2003) New catalytic concepts from new materials: understanding catalysis from a fundamental perspective, past, present, and future. J Catal 216:12–22CrossRefGoogle Scholar
  19. 19.
    Vayenas CG, Koutsodontis CG (2008) Non-Faradaic electrochemical activation of catalysis. J Chem Phys. doi: 10.1063/1.2824944 Google Scholar
  20. 20.
    Tsiplakides D, Balomenou S (2009) Milestones and perspectives in electrochemically promoted catalysis. Catal Today 146:312–318CrossRefGoogle Scholar
  21. 21.
    Katsaounis A (2010) Recent developments and trends in the electrochemical promotion of catalysis (EPOC). J Appl Electrochem 40:885–902CrossRefGoogle Scholar
  22. 22.
    Vayenas CG (2011) Bridging electrochemistry and heterogeneous catalysis. J Solid State Electrochem 15:1425–1435CrossRefGoogle Scholar
  23. 23.
    Vernoux P, Lizarraga L, De Lucas-Consuegra A, De Lucas-Consuegra A, Valverde JL, Souentie S, Vayenas C, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalytic supports. Chem Rev 113:8192–8260CrossRefGoogle Scholar
  24. 24.
    Mutoro E, Koutsodontis C, Luerssen B, Brosda S, Vayenas CG, Janek J (2010) Electrochemical promotion of Pt(111)/YSZ(111) and Pt-FeOx/YSZ(111) thin catalyst films: Electrocatalytic, catalytic and morphological studies. Appl Catal B 100:328–337CrossRefGoogle Scholar
  25. 25.
    Rosenthal D (2011) Functional surfaces in heterogeneous catalysis: a short review. Phys Status Solidi A 208:1217–1222CrossRefGoogle Scholar
  26. 26.
    Sterrer M, Freund HJ (2013) Towards realistic surface science models of heterogeneous catalysts: influence of support hydroxylation and catalyst preparation method. Catal Lett 143:375–385CrossRefGoogle Scholar
  27. 27.
    Yentekakis IV, Konsolakis M, Lambert RM, MacLeod N, Nalbantian L (1999) Extraordinarily effective promotion by sodium in emission control catalysis: NO reduction by propene over Na-promoted Pt/γ-Al2o3. Appl Catal B 22:123–133CrossRefGoogle Scholar
  28. 28.
    Palermo A, Lambert RM, Harkness IR, Yentekakis IV, Mar’ina O, Vayenas CG (1996) Electrochemical promotion by Na of the platinum-catalyzed reaction between CO and NO. J Catal 161:471–479CrossRefGoogle Scholar
  29. 29.
    Vayenas CG, Bebelis S, Despotopoulou M (1991) Non-faradaic electrochemical modification of catalytic activity 4. The use of β″-Al2O3 as the solid electrolyte. J Catal 128:415–435CrossRefGoogle Scholar
  30. 30.
    Tsampas MN, Sapountzi FM, Vayenas CG (2009) Electrochemical promotion of CO oxidation on Pt/YSZ: the effect of catalyst potential on the induction of highly active stationary and oscillatory states. Catal Today 146:351–358CrossRefGoogle Scholar
  31. 31.
    Bebelis S, Vayenas CG (1989) Non-faradaic electrochemical modification of catalytic activity: 1 the case of ethylene oxidation on Pt. J Catal 118:125–146CrossRefGoogle Scholar
  32. 32.
    Vayenas CG, Brosda S, Pliangos C (2001) Rules and mathematical modeling of electrochemical and chemical promotion: 1 reaction classification and promotional rules. J Catal 203:329–350CrossRefGoogle Scholar
  33. 33.
    Brosda S, Vayenas CG, Wei J (2006) Rules of chemical promotion. Appl Catal B 68:109–124CrossRefGoogle Scholar
  34. 34.
    Ladas S, Kennou S, Bebelis S, Vayenas CG (1993) Origin of non-faradaic electrochemical modification of catalytic activity. J Phys Chem 97:8845–8848CrossRefGoogle Scholar
  35. 35.
    Zipprich W, Wiemhöfer H-D, Vöhrer U, Göpel W (1995) In-situ photoelectron-spectroscopy of oxygen electrodes on stabilized zirconia. Berichte Bunsengesellschaft der Physikalischen Chemie 99:1406–1413CrossRefGoogle Scholar
  36. 36.
    Luerssen B, Gόnther S, Marbach H, Kiskinova M, Janek J, Imbihl R (2000) Photoelectron spectromicroscopy of electrochemically induced oxygen spillover at the Pt/YSZ interface. Chem Phys Lett 316:331–335CrossRefGoogle Scholar
  37. 37.
    Li X, Gaillard F, Vernoux P (2007) Investigations under real operating conditions of the electrochemical promotion by O2 temperature programmed desorption measurements. Top Catal 44:391–398CrossRefGoogle Scholar
  38. 38.
    Neophytides SG, Vayenas CG (1995) TPD and cyclic voltammetric investigation of the origin of electrochemical promotion in catalysis. J Phys Chem 99:17063–17067CrossRefGoogle Scholar
  39. 39.
    Tsiplakides D, Vayenas CG (1999) Temperature programmed desorption of oxygen from Ag films interfaced with Y2O3-doped ZrO2. J Catal 185:237–251CrossRefGoogle Scholar
  40. 40.
    Neophytides SG, Tsiplakides D, Vayenas CG (1998) Temperature-programmed desorption of oxygen from Pt films interfaced with Y2O3-doped ZrO2. J Catal 178:414–428CrossRefGoogle Scholar
  41. 41.
    Poppe J, Schaak A, Janek J, Imbihl R (1998) Electrochemically induced surface changes on microstructured Pt Films on a solid YSZ electrolyte. Berichte Bunsengesellschaft der Physikalischen Chemie 102:1019–1022CrossRefGoogle Scholar
  42. 42.
    Luerßen B, Mutoro E, Fischer H, Günther S, Imbihl R, Janek J (2006) In situ imaging of electrochemically induced oxygen spillover on Pt/YSZ catalysts. Angewandte Chemie—Int Ed 45:1473–1476CrossRefGoogle Scholar
  43. 43.
    Makri M, Vayenas CG, Bebelis S, Besocke KH, Cavalca C (1996) Atomic resolution STM imaging of electrochemically controlled reversible promoter dosing of catalysts. Surf Sci 369:351–359CrossRefGoogle Scholar
  44. 44.
    Vayenas C, Archonta D, Tsiplakides D (2003) STM observation of the origin of electrochemical promotion and Metal–Support interactions. J Electroanal Chem 554–555:301–306CrossRefGoogle Scholar
  45. 45.
    Tsiplakides D, Vayenas CG (2001) Electrode work function and absolute potential scale in solid-state electrochemistry. J Electrochem Soc 148:E189–E202CrossRefGoogle Scholar
  46. 46.
    Frantzis AD, Bebelis S, Vayenas CG (2000) Electrochemical promotion (NEMCA) of CH4 and C2H4 oxidation on Pd/YSZ and investigation of the origin of NEMCA via AC impedance spectroscopy. Solid State Ionics 136–137:863–872CrossRefGoogle Scholar
  47. 47.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and Metal–Support interactions 1. 18O2 TPD of electropromoted Pt films deposited on YSZ and of dispersed Pt/YSZ catalysts. J Catal 222:192–206CrossRefGoogle Scholar
  48. 48.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and metal–support interactions: 2. CO oxidation by 18O2 on electropromoted Pt films deposited on YSZ and on nanodispersed Pt/YSZ catalysts. J Catal 226:197–209CrossRefGoogle Scholar
  49. 49.
    Tsampas MN, Sapountzi FM, Boréave A, Vernoux P (2013) Isotopical labeling mechanistic studies of electrochemical promotion of propane combustion on Pt/YSZ. Electrochem Commun 26:13–16CrossRefGoogle Scholar
  50. 50.
    Pacchioni G, Illas F, Neophytides S, Vayenas CG (1996) Quantum-chemical study of electrochemical promotion in catalysis. J Phys Chem 100:16653–16661CrossRefGoogle Scholar
  51. 51.
    Pacchioni G, Lomas JR, Illas F (1997) Electric field effects in heterogeneous catalysis. Molecular Catalysis A 119:263–273CrossRefGoogle Scholar
  52. 52.
    Leiva E, Sanchez C (2003) The theory of the NEMCA effect. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells—fundamentals, technology and applications. Wiley, New York, pp 145–149Google Scholar
  53. 53.
    Leiva EPM (2007) On the work function changes and other properties of the gas-exposed electrode surface in the NEMCA effect. Top Catal 44:347–354CrossRefGoogle Scholar
  54. 54.
    Vayenas CG (2004) Thermodynamic analysis of the electrochemical promotion of catalysis. Solid State Ionics 168:321–326CrossRefGoogle Scholar
  55. 55.
    Riess I, Vayenas CG (2003) Potential distribution in solid electrolyte cells with and without ion spillover. Solid State Ionics 159:313–329CrossRefGoogle Scholar
  56. 56.
    Fleig J, Jamnik J (2005) Work function changes of polarized electrodes on solid electrolytes. J Electrochem Soc 152:E138–E145CrossRefGoogle Scholar
  57. 57.
    Panagiotopoulou P, Kondarides DI (2006) Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction. Catal Today 112:49–52CrossRefGoogle Scholar
  58. 58.
    Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis C, Vayenas CG (2001) Electrochemical promotion and metal–support interactions. J Catal 204:23–34CrossRefGoogle Scholar
  59. 59.
    Constantinou I, Archonta D, Brosda S, Lepage M, Sakamoto Y, Vayenas CG (2007) Electrochemical promotion of NO reduction by C3H6 on Rh catalyst-electrode films supported on YSZ and on dispersed Rh/YSZ catalysts. J Catal 251:400–409CrossRefGoogle Scholar
  60. 60.
    Somorjai GA (2005) The catalytic nanodiode. Its role in catalytic reaction mechanisms in a historical perspective. Catal Lett 101:1–3CrossRefGoogle Scholar
  61. 61.
    Park JY, Renzas JR, Contreras AM, Somorjai GA (2007) The genesis and importance of oxide-metal interface controlled heterogeneous catalysis; the catalytic nanodiode. Top Catal 46:217CrossRefGoogle Scholar
  62. 62.
    Somorjai GA, Park JY (2009) Concepts, instruments, and model systems that enabled the rapid evolution of surface science. Surf Sci 603:1293–1300CrossRefGoogle Scholar
  63. 63.
    Schwab GM, Darleth H (1967) J Phys Chem Neue Folge 53:1CrossRefGoogle Scholar
  64. 64.
    Solymosi F (1967) Catal Rev 1:233CrossRefGoogle Scholar
  65. 65.
    Agiral A, Gardeniers HJGE (2010) Microreactors with electrical fields. Adv Chem Eng 38:37CrossRefGoogle Scholar
  66. 66.
    Gorin CF, Beh ES, Kanan MW (2012) An electric field-induced change in the selectivity of a metal oxide-catalyzed epoxide rearrangement. J Am Chem Soc 134:186–189CrossRefGoogle Scholar
  67. 67.
    Jiménez-Borja C, Brosda S, Matei F, Makri M, Delgado B, Sapountzi F, Ciuparu D, Dorado F, Valverde JL, Vayenas CG (2012) Electrochemical promotion of methane oxidation on Pd catalyst-electrodes deposited on Y2O3-stabilized-ZrO2. Appl Catal B 128:48–54CrossRefGoogle Scholar
  68. 68.
    Roche V, Karoum R, Billard A, Revel R, Vernoux P (2008) Electrochemical promotion of deep oxidation of methane on Pd/YSZ. J Appl Electrochem 38:1111–1119CrossRefGoogle Scholar
  69. 69.
    Nakos A, Souentie S, Katsaounis A (2010) Electrochemical promotion of methane oxidation on Rh/YSZ. Appl Catal B 101:31–37CrossRefGoogle Scholar
  70. 70.
    Bebelis S, Kotsionopoulos N (2006) Non-Faradaic electrochemical modification of the catalytic activity for propane combustion of Pt/YSZ and Rh/YSZ catalyst-electrodes. Solid State Ionics 177:2205–2209CrossRefGoogle Scholar
  71. 71.
    Kokkofitis C, Karagiannakis G, Stoukides M (2007) Electrochemical promotion in O2-cells during propane oxidation. Top Catal 44:361–368CrossRefGoogle Scholar
  72. 72.
    Theleritis D, Souentie S, Siokou A, Katsaounis A, Vayenas CG (2012) Hydrogenation of CO2 over Ru/YSZ electropromoted catalysts. ACS Catal 2:770–780CrossRefGoogle Scholar
  73. 73.
    Souentie S, Lizarraga L, Kambolis A, Alves-Fortunato M, Valverde JL, Vernoux P (2011) Electrochemical promotion of the water–gas shift reaction on Pt/YSZ. J Catal 283:124–132CrossRefGoogle Scholar
  74. 74.
    Caravaca A, de Lucas-Consuegra A, Molina-Mora C, Valverde JL, Dorado F (2011) Enhanced H2 formation by electrochemical promotion in a single chamber steam electrolysis cell. Appl Catal B 106:54–62Google Scholar
  75. 75.
    de Lucas-Consuegra A, González-Cobos J, García-Rodríguez Y, Mosquera A, Endrino JL, Valverde JL (2012) Enhancing the catalytic activity and selectivity of the partial oxidation of methanol by electrochemical promotion. J Catal 293:149–157CrossRefGoogle Scholar
  76. 76.
    de Lucas-Consuegra A, Princivalle A, Caravaca A, Dorado F, Guizard C, Valverde JL, Vernoux P (2010) Preferential CO oxidation in hydrogen-rich stream over an electrochemically promoted Pt catalyst. Appl Catal B 94:281–287CrossRefGoogle Scholar
  77. 77.
    Lintanf A, Djurado E, Vernoux P (2008) Pt/YSZ electrochemical catalysts prepared by electrostatic spray deposition for selective catalytic reduction of NO by C3H6. Solid State Ionics 178:1998–2008CrossRefGoogle Scholar
  78. 78.
    de Lucas-Consuegra A, Caravaca A, Martínez PJ, Endrino JL, Dorado F, Valverde JL (2010) Development of a new electrochemical catalyst with an electrochemically assisted regeneration ability for H2 production at low temperatures. J Catal 274:251–258CrossRefGoogle Scholar
  79. 79.
    Poulidi D, Mather GC, Tabacaru CN, Thursfield A, Metcalfe IS (2009) Electrochemical promotion of a platinum catalyst supported on the high-temperature proton conductor La0.99Sr0.01NbO4−δ. Catal Today 146:279–284CrossRefGoogle Scholar
  80. 80.
    Salazar M, Smotkin E (2006) Electrochemically promoted olefin isomerization reactions at polymer electrolyte fuel cell membrane electrode assemblies. J Appl Electrochem 36:1237–1240CrossRefGoogle Scholar
  81. 81.
    Baranova EA, Thursfield A, Brosda S, Fóti G, Comninellis C, Vayenas CG (2005) Electrochemically induced oscillations of C2H4 oxidation over thin sputtered Rh catalyst films. Catal Lett 105:15–21CrossRefGoogle Scholar
  82. 82.
    Roche V, Hadjar A, Deloume JP, Pagnier T, Revel R, Roux C, Siebert E, Vernoux P (2009) Physicochemical origins of electrochemical promotion of LSM/YSZ. Catal Today 146:266–273CrossRefGoogle Scholar
  83. 83.
    Koutsodontis C, Katsaounis A, Figueroa JC, Cavalca C, Pereira CJ, Vayenas CG (2006) The effect of catalyst film thickness on the magnitude of the electrochemical promotion of catalytic reactions. Top Catal 38:157–167CrossRefGoogle Scholar
  84. 84.
    Anastasijevic NA (2009) NEMCA-From discovery to technology. Catal Today 146:308–311CrossRefGoogle Scholar
  85. 85.
    Yiokari CG, Pitselis GE, Polydoros DG, Katsaounis AD, Vayenas CG (2000) High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst. J Phys Chem A 104:10600–10602CrossRefGoogle Scholar
  86. 86.
    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Fóti G, Comninellis C, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Monolithic electrochemically promoted reactors: a step for the practical utilization of electrochemical promotion. Solid State Ionics 177:2201–2204CrossRefGoogle Scholar
  87. 87.
    Ruiz E, Cillero D, Martínez PJ, Morales Á, Vicente GS, De Diego G, Sánchez JM (2013) Bench scale study of electrochemically promoted catalytic CO2 hydrogenation to renewable fuels. Catal Today 210:55–66CrossRefGoogle Scholar
  88. 88.
    Vayenas CG, Vernoux P (2011) Note on “the electrochemical promotion of ethylene oxidation at a Pt/YSZ catalyst”. ChemPhysChem 12:1761–1763CrossRefGoogle Scholar
  89. 89.
    Vernoux P, Vayenas CG (2011) Note on “electrochemical promotion of catalytic reactions”. Prog Surf Sci 86:83–93CrossRefGoogle Scholar
  90. 90.
    Marwood M, Vayenas CG (1997) Electrochemical promotion of electronically isolated Pt catalysts on stabilized zirconia. J Catal 168:538–542CrossRefGoogle Scholar
  91. 91.
    Xia C, Hugentobler M, Li Y, Foti G, Comninellis C, Harbich W (2011) Electrochemical promotion of CO combustion over non-percolated Pt particles supported on YSZ using a novel bipolar configuration. Electrochem Commun 13:99–101CrossRefGoogle Scholar
  92. 92.
    Roche V, Revel R, Vernoux P (2010) Electrochemical promotion of YSZ monolith honeycomb for deep oxidation of methane. Catal Commun 11:1076–1080CrossRefGoogle Scholar
  93. 93.
    Kambolis A, Lizarraga L, Tsampas MN, Burel L, Rieu M, Viricelle JP, Vernoux P (2012) Electrochemical promotion of catalysis with highly dispersed Pt nanoparticles. Electrochem Commun 19:5–8CrossRefGoogle Scholar
  94. 94.
    Cavalca CA, Larsen G, Vayenas CG, Haller GL (1993) Electrochemical modification of methanol oxidation selectivity and activity on a platinum single-pellet catalytic reactor. J Phys Chem 97:6115–6119CrossRefGoogle Scholar
  95. 95.
    Wang Z, Huang H, Liu H, Zhou X (2012) Self-sustained electrochemical promotion catalysts for partial oxidation reforming of heavy hydrocarbons. Int J Hydrogen Energy 37:17928–17935CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Academy of AthensAthensGreece

Personalised recommendations