Skip to main content
Log in

Fischer–Tropsch Synthesis: Effect of Potassium on Activity and Selectivity for Oxide and Carbide Fe Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of potassium on oxides and carbides of iron for Fischer–Tropsch synthesis (FTS) was investigated by pretreating Fe3O4 and K-promoted Fe catalysts with different gases (H2/H2O and CO). A freshly activated sample and catalysts that were recovered from the CSTR before, during and after FT synthesis were characterized ex situ using Mössbauer spectroscopy. Iron carbide is found to be active for both FT and water gas shift (WGS) reactions. After H2/H2O activation, all three catalysts (Fe3O4, low α-Fe, and high α-Fe) exhibit a steady but low FT activity for a period of FT synthesis. However, both FT and WGS activity for Fe3O4 and low α-Fe catalysts were greatly improved after CO activation. In contrast, the high potassium containing catalyst (high α-Fe) did not show any further improvement in activity after CO activation. The difference in FT and WGS activity observed after pretreatment conditions using these catalysts may be associated to the amount of potassium and conversely the iron carbide present in the catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Anderson RB (1984) The Fischer–Tropsch synthesis. Academic Press, Orlando

    Google Scholar 

  2. Dry ME (1996) Appl Catal A 138:319

    Article  CAS  Google Scholar 

  3. Newsome DS (1980) Catal Rev Sci Eng 21:275

    Article  CAS  Google Scholar 

  4. de Smit E, Weckhuysen BM (2008) Chem Soc Rev 37:2758

    Article  Google Scholar 

  5. Butt JB (1991) Catal Lett 7:61

    Article  Google Scholar 

  6. Anderson RB, Seligman B, Shultz JF, Kelly R, Elliott MA (1952) Ind Eng Chem 44:391

    Article  CAS  Google Scholar 

  7. Dry ME (1981) In: Anderson JR, Boudart M (eds) Catal Sci Technol. Springer-Verlag, Berlin

    Google Scholar 

  8. Arakawa H, Bell AT (1983) Ind Eng Chem Process Design Dev 22:97

    Article  CAS  Google Scholar 

  9. Raje AP, O’Brien RJ, Davis BH (1998) J Catal 180:36

    Article  CAS  Google Scholar 

  10. Storch H, Golumbic N, Anderson RB (1951) Fischer–Tropsch and related synthesis. Wiley, New York

    Google Scholar 

  11. Sorescu DC (2011) Surf Sci 605:401

    Article  CAS  Google Scholar 

  12. van Steen E, Claeys M (2012) Proceedings of Syngas Convention, Cape Town, 1–4 April 2021

  13. Gnanamani MK, Jacobs G, Hamdeh HH, Shafer WD, Davis BH (2013) Catal Today 207:50

    Article  CAS  Google Scholar 

  14. Sarkar A, Jacobs G, Ji Y, Hamdeh HH, Davis BH (2008) Catal Lett 121:1

    Article  CAS  Google Scholar 

  15. Luo M, Hamdeh HH, Davis BH (2009) Catal Today 140:127

    Article  CAS  Google Scholar 

  16. Kuivila CS, Stair PC, Butt JB (1989) J Catal 118:299

    Article  CAS  Google Scholar 

  17. Reymond JP, Meriaudeau P, Teichner JC (1982) J Catal 75:39

    Article  CAS  Google Scholar 

  18. Dictor RA, Bell AT (1986) J Catal 97:121

    Article  CAS  Google Scholar 

  19. Krishnamoorthy S, Li A, Iglesia E (2002) Catal Lett 80:77

    Article  CAS  Google Scholar 

  20. Rethwisch DG, Dumesic JA (1986) J Catal 101:35

    Article  CAS  Google Scholar 

  21. Lox ES, Froment GF (1993) Ind Eng Chem Res 32:71

    Article  CAS  Google Scholar 

  22. Rao KRPM, Huggins FE, Mahajan V, Huffman GP, Rao VUS, Bhatt BL, Bukur BD, Davis BH, O’Brien RJ (1995) Top Catal 2:71

    Article  CAS  Google Scholar 

  23. Hanlon RT, Satterfield CN (1988) Energy Fuels 2:196

    Article  CAS  Google Scholar 

  24. Dry ME (2004) In: Steynberg A, Dry ME (eds) Fischer–Tropsch technology; Stud Surf Sci Catal, vol 152. Elsevier, Amsterdam, p 196

  25. Gaube J, Klein H-F (2010) In: Davis BH, Occelli ML (eds) Advances in Fischer–Tropsch synthesis, catalysts, and catalysis, chemical industries series 128, CRC press, Taylor & Francis group, New York, p 199–214

  26. Fischer F, Tropsch H (1926) Brennstoff-Chem 7:97

    CAS  Google Scholar 

  27. Craxford SR, Rideal E (1939) Brennstoff-Chem 20:263

    Google Scholar 

  28. Maitlis PM, Long HC, Quyoum R, Turner ML, Whang Z-Q (1996) Chem Commun 1:1

    Article  Google Scholar 

  29. Sternberg A, Wender J (1959) Proc. Intern. Conf. Coordination Chem. The Chemical Society, London, 53

  30. Anderson KG, Ekerdt JG (1985) J Catal 95:602

    Article  CAS  Google Scholar 

  31. Dry ME (1990) Catal Today 6:183

    Article  CAS  Google Scholar 

  32. Zhuo M, Tan KF, Borgna A, Saeys M (2009) J Phys Chem C 113:8357

    Article  CAS  Google Scholar 

  33. Tenga B-T, Zhang C-H, Yang J, Cao D-B, Chang J, Xiang H-W, Li Y-W (2005) Fuel 84:791

    Article  Google Scholar 

  34. Sarkar A, Keogh RA, Bao S, Davis BD (2008) Catal Lett 120:25

    Article  CAS  Google Scholar 

  35. Gaube J, Klein H-F (2008) Appl Catal A 350:126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commonwealth of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnanamani, M.K., Hamdeh, H.H., Shafer, W.D. et al. Fischer–Tropsch Synthesis: Effect of Potassium on Activity and Selectivity for Oxide and Carbide Fe Catalysts. Catal Lett 143, 1123–1131 (2013). https://doi.org/10.1007/s10562-013-1110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1110-7

Keywords

Navigation