Skip to main content
Log in

Hollow Silica Nanoparticles as Support for Catalase Enzyme Immobilization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We have demonstrated a simple and softer fabrication technique of preparing hollow silica nanoparticles (HSNPs) immobilizing an enzyme catalase within its cavity using calcium phosphate nanoparticles as template. Morphology of the so-synthesized nanoparticles is discussed in the light of dynamic light scattering and high resolution transmission electron microscopy. The average diameter of the particles is about 50 nm. Variation of its activity over a wide range of temperature, pH and a comparison of complete enzyme kinetic study of the entrapped enzyme within the cavity of HSNPs with that of free enzyme in aqueous phosphate buffer solution are vividly discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aubert T, Grasset F, Mornet S, Duguet E, Cador O, Cordier S, Molard Y, Demange V, Mortier M, Haneda H (2010) J Colloid Interface Sci 341:201

    Article  CAS  Google Scholar 

  2. Slowing II, Trewyn BG, Giri S, Victor S, Lin Y (2007) Adv Funct Mater 17:1225

    Article  CAS  Google Scholar 

  3. Du Y, Luna LE, Tan WS, Rubner MF, Cohen RE (2010) ACS nano 4:4308

    Article  CAS  Google Scholar 

  4. Liu S, Han MY (2010) Chem Asian J 5:36

    CAS  Google Scholar 

  5. Yang J, Lee J, Kang J, Lee K, Suh JS, Yoon HG, Huh YM, Haam S (2008) Langmuir 24:3417

    Article  CAS  Google Scholar 

  6. Corr SA, Rakovich YP, Gun’ko YK (2008) Nanoscale Res Lett 3:87

    Article  CAS  Google Scholar 

  7. Han Y, Jiang J, Lee SS, Ying JY (2008) Langmuir 24:5842

    Article  CAS  Google Scholar 

  8. Du X, He J (2011) Chem Eur J 17:8165

    Article  CAS  Google Scholar 

  9. Wang H, Schaefer K, Moeller M (2008) J Phys Chem C 112:3175

    Article  CAS  Google Scholar 

  10. Li H, Ha CS, Kim II (2010) J Nanopart Res 12:985

    Article  CAS  Google Scholar 

  11. Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2011) Angew Chem Int Ed 50:4056

    Article  CAS  Google Scholar 

  12. Chen ZL, Sun Y, Huang P, Yang XX, Zhou XP (2009) Nanoscale Res Lett 4:400

    Article  CAS  Google Scholar 

  13. Qin W, Song Z, Fan C, Zhang WJ, Cai Y, Zhang Y, Qian X (2012) Anal Chem 84:3138

    Article  CAS  Google Scholar 

  14. Li Y, Xu X, Deng C, Yang P, Zhang X (2007) J Proteome Res 6:3849

    Article  CAS  Google Scholar 

  15. Itoh T, Ishii R, Matsuura SI, Hamakawa S, Hanaoka T, Tsunoda T, Mizuguchi J, Mizukami F (2009) Biochem Eng J 44:167

    Article  CAS  Google Scholar 

  16. Wang Y, Caruso F (2005) Chem Mater 17:953

    Article  CAS  Google Scholar 

  17. Foote RH, Hare E (2000) J Androl 21:664

    CAS  Google Scholar 

  18. Prieto MA, Biarne′s X, Vidossich P, Rovira C (2009) J Am Chem Soc 131:11751

    Article  Google Scholar 

  19. Halliwell B, Gutteridge JMC (1984) J Biochem 219:1

    Article  CAS  Google Scholar 

  20. Vuillame M (1987) Mutat Res 186:43

    Article  Google Scholar 

  21. Yabuki M, Kariya S, Ishisaka R, Yasuda T, Yoshioka T, Horton AA, Utsumi K (1999) Free Radic Biol Med 26:325

    Article  CAS  Google Scholar 

  22. Islam KN, Kayanoki Y, Kaneto H, Suzuki K, Asahi M, Fuiji J, Taniguchi N (1997) Free Radic Biol Med 22:1007

    Article  CAS  Google Scholar 

  23. Sandstrom PA, Buttke TM (1993) Proc Natl Acad Sci USA 90:4708

    Article  CAS  Google Scholar 

  24. Miyamoto T, Hayashi M, Takeuchi A, Okamoto T, Kawashima S, Takii T, Hayashi H, Onozaki K (1996) J Biochem 120:725

    Article  CAS  Google Scholar 

  25. Arabaci G, Usluoglu A (2013) J Chem. doi:10.1155/2013/686185

    Google Scholar 

  26. Sharma RK, Das S, Maitra A (2005) J Colloid Interface Sci 284:358

    Article  CAS  Google Scholar 

  27. Hentze HP, Raghavan SR, McKelvey CA, Kaler EW (2003) Langmuir 19:1069

    Article  CAS  Google Scholar 

  28. Okubo M, Konishi Y, Minami H (1998) Colloid Polym Sci 276:638

    Article  CAS  Google Scholar 

  29. Yang Z, Zhao D, Xu M, Xu Y (2000) Macromol Rapid Commun 21:574

    Article  CAS  Google Scholar 

  30. Fowler CE, Khushalani D, Mann S (2001) Chem Commun 0:2028

    Article  CAS  Google Scholar 

  31. Nam KM, Shim JH, Ki H, Choi S, Lee G, Jang JK, Jo Y, Jung Y, Song H, Park JT (2008) Angew Chem Int Ed 47:9504

    Article  CAS  Google Scholar 

  32. Sun Z, Bai F, Wu H, Schmitt SK, Boye DM, Fan H (2009) J Am Chem Soc 131:13594

    Article  CAS  Google Scholar 

  33. Gao J, Ren X, Chen D, Tang F, Ren J (2007) Scripta Mater 57:687

    Article  CAS  Google Scholar 

  34. Gao X, Zhang J, Zhang L (2002) Adv Mater 14:290

    Article  CAS  Google Scholar 

  35. Huang C, Hao Y (2011) J Nanosci Nanotechnol 11:3701

    Article  CAS  Google Scholar 

  36. Shan ZW, Adesso G, Cabot A, Sherburne MP, Asif SAS, Warren OL, Chrzan DC, Minor AM, Alivisatos AP (2008) Nat Mater 7:947

    Article  CAS  Google Scholar 

  37. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  38. Jain TP, Roy I, De Tapas K, Maitra A (1998) J Am Chem Soc 120:11092

    Article  CAS  Google Scholar 

  39. Trevan MD (1980) Immobilized enzyme—an introduction and application in biotechnology. Wiley, New York

    Google Scholar 

  40. Ahn HS, Shin HS (2006) J Chromatogr B 843:202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Prof. Amarnath Maitra and Dr. Indrajit Roy, Department of Chemistry, University of Delhi, for their valuable comments and fruitful discussions. NG and HPS are highly thankful to Council of Scientific and Industrial Research (CSIR), Delhi, for providing Senior Research Fellowship. We are also grateful to University Grant Commission, Government of India, for the financial assistance in the form of a research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Sharma.

Additional information

Henam Premananda Singh and Nikesh Gupta contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.P., Gupta, N. & Sharma, R.K. Hollow Silica Nanoparticles as Support for Catalase Enzyme Immobilization. Catal Lett 143, 1304–1311 (2013). https://doi.org/10.1007/s10562-013-1080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1080-9

Keywords

Navigation