Catalysis Letters

, Volume 143, Issue 7, pp 687–696 | Cite as

Effect of Aging Atmosphere on Catalytic Activity for NO–CO–C3H6–O2 Reaction of CeO2-Containing Oxide Supported Pd Catalysts

  • Takashi Wakabayashi
  • Sumio Kato
  • Yuunosuke Nakahara
  • Ryoichi Oshima
  • Masataka Ogasawara
  • Shinichi Nakata
Article
  • 268 Downloads

Abstract

The catalytic activity for CO, hydrocarbon and NO removal on Al2O3 and CeO2 based oxides supported Pd catalysts were studied under switching of aging condition between air and N2 atmosphere. For CeO2-containing Pd catalysts, the deterioration of catalytic activities by aging in N2 was improved by oxidative treatment. Based on results of XPS and FT-IR measurements, it was presumed that the catalytic activity of Pd catalysts was strongly affected by the adsorbed form of CO on Pd, which occurs owing to a change of the chemical state of Pd.

Graphical Abstract

Keywords

Palladium Cerium oxide Oxidation 

References

  1. 1.
    Yamada T, Kayano K, Funabiki M (1993) SAE Paper 930253Google Scholar
  2. 2.
    Boehman AL, Niksa S (1993) SAE Paper 932761Google Scholar
  3. 3.
    Brisley RJ, Chandler GR, Jones HR, Anderson PJ, Shady PJ (1995) SAE Paper 950259Google Scholar
  4. 4.
    Lassi U, Polvinen R, Suhonen S, Kallinen K, Savimäki A, Härkönen M, Valden M, Keiski RL (2004) Appl Catal A 263:241CrossRefGoogle Scholar
  5. 5.
    Kobayashi T, Nagatomo S, Ishikawa K, Yamada T (2000) SAE Paper 2000-01-2927Google Scholar
  6. 6.
    Macleod N, Lambert RM (2003) Appl Catal B 46:483CrossRefGoogle Scholar
  7. 7.
    Qi G, Yang RT, Rinaldi FC (2006) J Catal 237:381CrossRefGoogle Scholar
  8. 8.
    Datye AK, Bravo J, Nelson TR, Atanasova P, Lyubovsky M, Pfefferle L (2000) Appl Catal A 198:179CrossRefGoogle Scholar
  9. 9.
    Farrauto RJ, Hobson MC, Kennelly T, Waterman EM (1992) Appl Catal A 81:227CrossRefGoogle Scholar
  10. 10.
    Xu Q, Kharas KC, Datye AK (2001) Stud Surf Sci Catal 139:157CrossRefGoogle Scholar
  11. 11.
    Shinjoh H, Muraki H, Fujitani Y (1991) Stud Surf Sci Catal 71:617CrossRefGoogle Scholar
  12. 12.
    Craciun R, Daniell W, Knözinger H (2002) Appl Catal A 230:153CrossRefGoogle Scholar
  13. 13.
    Ciuparu D, Lyubovsky MR, Altman E, Pfefferle L, Datye A (2002) Catal Rev Sci Eng 44:593CrossRefGoogle Scholar
  14. 14.
    Gélin P, Primet M (2002) Appl Catal B 30:1Google Scholar
  15. 15.
    Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M (2010) Chem Mater 22:6183CrossRefGoogle Scholar
  16. 16.
    Haneda M, Shinoda K, Nagane A, Houshito O, Takagi H, Nakahara Y, Hiroe K, Fujitani T, Hamada H (2008) J Catal 259:223CrossRefGoogle Scholar
  17. 17.
    Takeguchi T, Manabe S, Kikuchi R, Eguchi K, Kanazawa T, Matsumoto S (2005) Appl Catal A 293:91CrossRefGoogle Scholar
  18. 18.
    Costa CN, Christou SY, Georgiou G, Efstathiou AM (2003) J Catal 219:259CrossRefGoogle Scholar
  19. 19.
    Xu Q, Kharas KC, Croley BJ, Datye AK (2012) Top Catal 55:78CrossRefGoogle Scholar
  20. 20.
    Nagai Y, Hirabayashi KT, Dohmae K, Takagi N, Shinjoh T, Matsumoto S (2006) J Catal 242:103CrossRefGoogle Scholar
  21. 21.
    Xu Q, Kharas KC, Croley BJ, Datye AK (2011) ChemCatChem 3:1004CrossRefGoogle Scholar
  22. 22.
    Bird RJ, Swift P (1980) J Electron Spectrosc Relat Phenom 21:227CrossRefGoogle Scholar
  23. 23.
    Johansson G, Hedman J, Berndtsson A, Klasson M, Nilsson R (1973) J Electron Spectrosc Relat Phenom 2:295CrossRefGoogle Scholar
  24. 24.
    Kim DH, Woo SI, Lee JM, Yang O (2000) Catal Lett 70:35CrossRefGoogle Scholar
  25. 25.
    Otto K, Haack LP, de Vries JE (1992) Appl Catal B 1:1CrossRefGoogle Scholar
  26. 26.
    Bi Y, Lu G (2003) Appl Catal B 41:279CrossRefGoogle Scholar
  27. 27.
    Guimarães AL, Dieguez LC, Schmal M (2003) J Phys Chem B 107:4311CrossRefGoogle Scholar
  28. 28.
    Moroseac M, Skála T, Veltruská K, Matolín V, Matolínová I (2004) Surf Sci 566–568:1118CrossRefGoogle Scholar
  29. 29.
    Colussi S, Gayen A, Camellone MF, Boaro M, Llorca J, Fabris S, Trovarelli A (2009) Angew Chem Int Ed 48:8481CrossRefGoogle Scholar
  30. 30.
    Zhu H, Qin Z, Shan W, Shen W, Wang J (2004) J Catal 225:267CrossRefGoogle Scholar
  31. 31.
    Fernández-Garciá M, Martínez-Arias A, Salamanca LN, Coronado JM, Anderson JA, Conesa JC, Soria J (1999) J Catal 187:474CrossRefGoogle Scholar
  32. 32.
    Fernández-Garciá M, Martínez-Arias A, Iglesias-Juez A, Hungría AB, Anderson JA, Conesa JC, Soria J (2001) Appl Catal B 31:39CrossRefGoogle Scholar
  33. 33.
    Martínez-Arias A, Fernández-Garciá M, Iglesias-Juez A, Hungría AB, Anderson JA, Conesa JC, Soria J (2001) Appl Catal B 31:51CrossRefGoogle Scholar
  34. 34.
    Choi KI, Vannice MA (1991) J Catal 127:465CrossRefGoogle Scholar
  35. 35.
    Bensalem A, Muller JC, Tessier D, Bozon-Verduraz F (1996) J Chem Soc Faraday Trans 92:3233CrossRefGoogle Scholar
  36. 36.
    Haneda M, 32st Meeting on Japan Reference Catalyst Program I-5 (2011) 9Google Scholar
  37. 37.
    Valden M, Keiski RL, Xiang N, Pere J, Aaltonen J, Pessa M, Maunula T, Savimäki A, Lahti A, Härkönen M (1996) J Catal 161:614CrossRefGoogle Scholar
  38. 38.
    Pitchon V, Primet M, Praliaud H (1990) Appl Catal 62:317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Takashi Wakabayashi
    • 1
  • Sumio Kato
    • 2
  • Yuunosuke Nakahara
    • 1
  • Ryoichi Oshima
    • 1
  • Masataka Ogasawara
    • 2
  • Shinichi Nakata
    • 2
  1. 1.Catalysts Strategic DivisionMitsui Mining & Smelting Co., Ltd.AgeoJapan
  2. 2.Department of Applied ChemistryGraduate School of Engineering and Resource Science, Akita UniversityAkitaJapan

Personalised recommendations