Abstract
Simulated waste-derived synthesis gas has been tested for hydrogen production through water gas shift (WGS) reaction in the temperature range of 350–550 °C over chromium free Fe/Al/Cu oxide based catalysts. The CuO loading amount was optimized to get highly active Fe/Al/Cu oxide based catalysts for the high temperature WGS. Despite the high CO content in the feed gas (38.2 % dry basis), 15 % CuO catalyst exhibited the highest CO conversion (86 %) and 100 % selectivity to CO2 at a very high gas hourly space velocity (GHSV) of 40,057 h−1 due to easier reducibility, the synergy effect of copper and aluminum, and the stability of the active phase (magnetite: Fe3O4).
Graphical Abstract

This is a preview of subscription content, access via your institution.





References
- 1.
Roh HS, Wang Y, King DL (2008) Top Catal 49:32
- 2.
Logan BE (2004) Environ Sci Technol 38:160A
- 3.
Arena U, Zaccariello L, Mastellone ML (2010) Waste Manag 30:1219
- 4.
Heermann C, Schwager FJ, Whiting KJ (2001) Pyrolysis and gasification of waste: a worldwide technology and business review. Juniper Consultancy Services, United Kingdom
- 5.
Malkow T (2004) Waste Manag 24:53
- 6.
Stiegel GJ, Maxwell RC (2001) Fuel Process Technol 71:79
- 7.
Young GC (2010) Municipal solid waste to energy conversion processes: economic, technical, and renewable comparisons. John Wiley, Hoboken
- 8.
Twigg MV (1989) Catalyst handbook. Wolfe Scientific Books, London
- 9.
Fernando R, Coal gasification (IEA clean coal centre Report CCC/140, 2008)
- 10.
Jeong DW, Potdar HS, Roh HS (2012) Catal Lett 142:439
- 11.
Roh HS, Jeong DW, Kim KS, Eum IC, Koo KY, Yoon WL (2011) Catal Lett 141:95
- 12.
Newsome DS (1980) Catal Rev 21:275
- 13.
Hutchings GJ, Copperthwaitet RG, Gottschalk FM, Hunter R, Mellor J, Orchard SW, Sangiorgio T (1992) J Catal 137:408
- 14.
Reddy GK, Boolchand P, Smirniotis PG (2012) J Phys Chem C 116:11019
- 15.
Martos C, Dufour J, Ruiz A (2009) Int J Hydrogen Energy 34:4475
- 16.
de Araújo GC, do Carmo RM (2000) Catal Today 62:201
- 17.
Júnior IL, Millet JMM, Aouine M, do Carmo RM (2005) Appl Catal A Gen 283:91
- 18.
Sun Y, Hla SS, Duffy GJ, Cousins AJ, French D, Morpeth LD, Edwards JH, Roberts DG (2011) Int J Hydrogen Energy 36:79
- 19.
Edwards M, Whittle D, Rhodes C, Ward A, Rohan D, Shannon M, Hutchings G, Kiely C (2002) Phys Chem Chem Phys 4:3902
- 20.
Kappen P, Grunwaldt JD, Hammershøi BS, Tröger L, Clausen BS (2001) J Catal 198:56
- 21.
Andreev A, Idakiev V, Mihajlova D, Shopov D (1986) Appl Catal 22:385
- 22.
Rhodes C, Williams BP, King F, Hutchings GJ (2002) Catal Commun 3:381
- 23.
Kochloefl K (1997) Steam reforming. In: Ertl G, Knozinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 4. Viley VCH, Weinheim, pp 1819–1831
- 24.
Natesakhawat S, Wang X, Zhang L, Ozkan US (2006) J Mol Catal A 260:82
- 25.
Zhang L, Wang X, Millet JMM, Matter PH, Ozkan US (2008) Appl Catal A 351:1
- 26.
Zhang L, Millet JMM, Ozkan US (2009) Appl Catal A 357:66
- 27.
Jeong DW, Potdar HS, Kim KS, Roh HS (2011) Bull Korean Chem Soc 32:3557
- 28.
Roh HS, Eum IC, Jeong DW (2012) Renew Energy 42:212
- 29.
Potdar HS, Jeong DW, Kim KS, Roh HS (2011) Catal Lett 141:1268
- 30.
Roh HS, Potdar HS, Jeong DW, Kim KS, Shim JO, Jang WJ, Koo KY, Yoon WL (2012) Catal Today 185:113
- 31.
Ladebeck J, Kochloefl K (1995) Stud Surf Sci Catal 91:1079
- 32.
Topsøe H, Dumesic JA, Boudart M (1973) J Catal 28:477
- 33.
Ratnasamy C, Wagner JP (2009) Catal Rev Sci Eng 51:325
Acknowledgments
This work was supported by the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2011T100200273). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0002521).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jeong, DW., Subramanian, V., Shim, JO. et al. High-Temperature Water Gas Shift Reaction Over Fe/Al/Cu Oxide Based Catalysts Using Simulated Waste-Derived Synthesis Gas. Catal Lett 143, 438–444 (2013). https://doi.org/10.1007/s10562-013-0981-y
Received:
Accepted:
Published:
Issue Date:
Keywords
- Waste-derived synthesis gas
- Water gas shift (WGS)
- Fe/Al/Cu
- Reducibility
- Synergy effect
- Stability