High-Temperature Water Gas Shift Reaction Over Fe/Al/Cu Oxide Based Catalysts Using Simulated Waste-Derived Synthesis Gas


Simulated waste-derived synthesis gas has been tested for hydrogen production through water gas shift (WGS) reaction in the temperature range of 350–550 °C over chromium free Fe/Al/Cu oxide based catalysts. The CuO loading amount was optimized to get highly active Fe/Al/Cu oxide based catalysts for the high temperature WGS. Despite the high CO content in the feed gas (38.2 % dry basis), 15 % CuO catalyst exhibited the highest CO conversion (86 %) and 100 % selectivity to CO2 at a very high gas hourly space velocity (GHSV) of 40,057 h−1 due to easier reducibility, the synergy effect of copper and aluminum, and the stability of the active phase (magnetite: Fe3O4).

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Roh HS, Wang Y, King DL (2008) Top Catal 49:32

    Article  CAS  Google Scholar 

  2. 2.

    Logan BE (2004) Environ Sci Technol 38:160A

    Article  CAS  Google Scholar 

  3. 3.

    Arena U, Zaccariello L, Mastellone ML (2010) Waste Manag 30:1219

    Article  Google Scholar 

  4. 4.

    Heermann C, Schwager FJ, Whiting KJ (2001) Pyrolysis and gasification of waste: a worldwide technology and business review. Juniper Consultancy Services, United Kingdom

    Google Scholar 

  5. 5.

    Malkow T (2004) Waste Manag 24:53

    Article  CAS  Google Scholar 

  6. 6.

    Stiegel GJ, Maxwell RC (2001) Fuel Process Technol 71:79

    Article  CAS  Google Scholar 

  7. 7.

    Young GC (2010) Municipal solid waste to energy conversion processes: economic, technical, and renewable comparisons. John Wiley, Hoboken

    Google Scholar 

  8. 8.

    Twigg MV (1989) Catalyst handbook. Wolfe Scientific Books, London

    Google Scholar 

  9. 9.

    Fernando R, Coal gasification (IEA clean coal centre Report CCC/140, 2008)

  10. 10.

    Jeong DW, Potdar HS, Roh HS (2012) Catal Lett 142:439

    Article  CAS  Google Scholar 

  11. 11.

    Roh HS, Jeong DW, Kim KS, Eum IC, Koo KY, Yoon WL (2011) Catal Lett 141:95

    Article  CAS  Google Scholar 

  12. 12.

    Newsome DS (1980) Catal Rev 21:275

    Article  CAS  Google Scholar 

  13. 13.

    Hutchings GJ, Copperthwaitet RG, Gottschalk FM, Hunter R, Mellor J, Orchard SW, Sangiorgio T (1992) J Catal 137:408

    Article  CAS  Google Scholar 

  14. 14.

    Reddy GK, Boolchand P, Smirniotis PG (2012) J Phys Chem C 116:11019

    Article  CAS  Google Scholar 

  15. 15.

    Martos C, Dufour J, Ruiz A (2009) Int J Hydrogen Energy 34:4475

    Article  CAS  Google Scholar 

  16. 16.

    de Araújo GC, do Carmo RM (2000) Catal Today 62:201

    Article  Google Scholar 

  17. 17.

    Júnior IL, Millet JMM, Aouine M, do Carmo RM (2005) Appl Catal A Gen 283:91

    Article  Google Scholar 

  18. 18.

    Sun Y, Hla SS, Duffy GJ, Cousins AJ, French D, Morpeth LD, Edwards JH, Roberts DG (2011) Int J Hydrogen Energy 36:79

    Article  CAS  Google Scholar 

  19. 19.

    Edwards M, Whittle D, Rhodes C, Ward A, Rohan D, Shannon M, Hutchings G, Kiely C (2002) Phys Chem Chem Phys 4:3902

    Article  CAS  Google Scholar 

  20. 20.

    Kappen P, Grunwaldt JD, Hammershøi BS, Tröger L, Clausen BS (2001) J Catal 198:56

    Article  CAS  Google Scholar 

  21. 21.

    Andreev A, Idakiev V, Mihajlova D, Shopov D (1986) Appl Catal 22:385

    Article  CAS  Google Scholar 

  22. 22.

    Rhodes C, Williams BP, King F, Hutchings GJ (2002) Catal Commun 3:381

    Article  CAS  Google Scholar 

  23. 23.

    Kochloefl K (1997) Steam reforming. In: Ertl G, Knozinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 4. Viley VCH, Weinheim, pp 1819–1831

    Google Scholar 

  24. 24.

    Natesakhawat S, Wang X, Zhang L, Ozkan US (2006) J Mol Catal A 260:82

    Article  CAS  Google Scholar 

  25. 25.

    Zhang L, Wang X, Millet JMM, Matter PH, Ozkan US (2008) Appl Catal A 351:1

    Article  CAS  Google Scholar 

  26. 26.

    Zhang L, Millet JMM, Ozkan US (2009) Appl Catal A 357:66

    Article  CAS  Google Scholar 

  27. 27.

    Jeong DW, Potdar HS, Kim KS, Roh HS (2011) Bull Korean Chem Soc 32:3557

    Article  CAS  Google Scholar 

  28. 28.

    Roh HS, Eum IC, Jeong DW (2012) Renew Energy 42:212

    Article  CAS  Google Scholar 

  29. 29.

    Potdar HS, Jeong DW, Kim KS, Roh HS (2011) Catal Lett 141:1268

    Article  CAS  Google Scholar 

  30. 30.

    Roh HS, Potdar HS, Jeong DW, Kim KS, Shim JO, Jang WJ, Koo KY, Yoon WL (2012) Catal Today 185:113

    Article  CAS  Google Scholar 

  31. 31.

    Ladebeck J, Kochloefl K (1995) Stud Surf Sci Catal 91:1079

    Article  CAS  Google Scholar 

  32. 32.

    Topsøe H, Dumesic JA, Boudart M (1973) J Catal 28:477

    Article  Google Scholar 

  33. 33.

    Ratnasamy C, Wagner JP (2009) Catal Rev Sci Eng 51:325

    Article  CAS  Google Scholar 

Download references


This work was supported by the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2011T100200273). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0002521).

Author information



Corresponding author

Correspondence to Hyun-Seog Roh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeong, DW., Subramanian, V., Shim, JO. et al. High-Temperature Water Gas Shift Reaction Over Fe/Al/Cu Oxide Based Catalysts Using Simulated Waste-Derived Synthesis Gas. Catal Lett 143, 438–444 (2013). https://doi.org/10.1007/s10562-013-0981-y

Download citation


  • Waste-derived synthesis gas
  • Water gas shift (WGS)
  • Fe/Al/Cu
  • Reducibility
  • Synergy effect
  • Stability